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This deliverable summarizes the first two versions and is focused on the support of analysis and

optimization.

The first part contains the modelling concepts for Systems of Systems (SoSs) modelling including the
semantic concepts. Three different aspects are used to model the SoS specific characteristics of systems.
The first are the manifold types of Constituent Systems (CSs) and their (interaction) relations. Beside the
technical aspect of interaction also a mean for an intention or goal is required. The second part is the
evolutionary development of the SoS and each participating CS. Specifications for behaviour of system
dynamics and evolution are addressed as third aspect. The section 2.1 Modeling SoS is completely
reworked while section 2.2 Dynamicity and 2.3 Contracts are only updated with minor changes. The second
part links those concepts to the UPDM language and the extensions for UPDM as defined in the extension
profile (D6.5.2). Section 3.3 Mapping of Concepts to UPDM is completely reworked as well. This document is
the harmonization of the first two documents with a focus on the common modelling concepts for modelling
SoS.

Section 4 Extensions of UPDM covers also a stable part since the UPDM model did not changed as well as
the identified gap. This section is a copy from the previous version of the document (D6.2.2). The presented
extensions feed the analysis and optimization while refining and/or extending the SoS model itself. In the
appendix the DANSE meta model is documented in detail which has not been done in the previous versions

of this document.
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The modeling formalism is threefold. The So0oS ASnapshoto covers all particip:

and relations/interconnections among them. Data and Command exchange between these CS is derived
from the behaviors of the individual CSs and their interconnections. The evolution model addresses the
evolutionary aspect of SoS i.e. the change of the set of participating CSs or the change of the
interconnections among them. This dynamics is called 0
behavior of the CSs and the dynamicity imply the overall SoS behavior which include e.g. the adaptation to
new environmental conditions. To analyze or optimize the SoS one could use all details in the CSs models
and the composition of those as SoS snhapshot or apply the mean of contract. Contracts restrict the dynamics
of the CSs or the SoS on both levels. See (Baumgart, et al., 2011), (Hungar, 2011), (Damm, Hungar, Josko,
Peikenkamp, & Stierand, 2011) and (Meyer, 1992) for details how this is applied to the CS behaviors and
(Etzien, Gezgin, Froschle, Henkler, & Rettberg, 2013), (Gezgin, Etzien, Henkler, & Rettberg, 2012) and
(Etzien & Gezgin, Correct by Prognosis: Methodology for a Contract-based refinement of Evolution Models,
2014 (to be published)) for how to apply contracts on dynamicity. The DANSE model is defined as "Y¢ Y
"® WHOROS with "Othe possibly empty instantiation of the CSs, 6 “Yhe set of CSs types, 'Y the set of
relations/interconnections between CSs, ‘'O the dynamic behavior of the SoS (aka Dynamicity), "O6the set of
goals and contracts of the So0S. The set of constituent systems 6 “¥onsists of all types of CSs. The instances
of @iv 6 ™are connected in the instantiation "Owith different relations'Y to each other, to environmental

elements e.g. resources and to the contracts and goals in "0&

In the following each of these three concepts are discussed in detail.

21 Modeling SoS

The modeling formalism is based upon several concepts which are the building blocks of an ontology. The
ontology is used to give an intuitive semantics. Derived from this a meta model is defined which is them

mapped to the UPDM meta model.

In (Maier, 1999) five different criteria to distinguish complex from systems of systems are presented. Those
criteria refer amongst others to two degrees of freedom (operational and managerial independence) which

imply the notion of an agent for a CS.

An Agent represents a CS. This system has a specification or Contract. Agents can be passive or active,
which means that they follow their own Goals, or even entire SoS. As illustrated in Figure 2-1, the meta
model e | ComstdueritSysiemo | mpl ements the Agent types ¢he @dtive wi t h
fActiveConstituentSystemo a n d t h enfragstustedd Ownerfship is a relation between Agents which

implies that if yowns cthen Gis not fully independent in terms of management from ¢
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A SoS consists of several participating Agents which themselves might be SoSs. The participation relation
is not exclusive. One Agent might be participating in several SoSs at the same time. It also does not
necessarily imply the loss of managerial or operational independence of the Agent. Participation is a
precondition for emergent' Behavior and evolutionary development. The creation and/or deletion of Agent in

a SoS is directly reflected with the set of participating Agents.

The Contract restricts the Behavior observable on the Interface of the agent. Contracts use the interface
variables and define the valid or invalid behavior over those variables. The Behavior of a CS contains all
possible system dynamics of the CS. System dynamics are the value assignments per interface variable, per
point in time. This (timed) trace might be infinite and characterized via temporal logic (see D6.3.1/D6.3.2
GCSL Specification (DANSE Consortium, 2013)). If an Agent implements its Contracts, it satisfies its
Contracts. As long as the analysis did not have proved that the Agent satisfies the Contracts there is a
relation shall satisfy that indicates which prove obligations are still left. In the meta model this is

represented by two lists which contain the associated and the satisfied Contracts.

Each active Agent follows a set of Goals, which is a function over a set of variables and is defined over

potentially infinite domains and only the tendency is relevant. A Goal is to increase or decrease the value of

the function by interaction with the environment (incl. other Agents). T h eConfiractdo el ement r epr ese
specification @Golothekee Agkejnéctainded of the active Agent s.

Within a SoS several Agents exchange different kinds of Resources as part of their Behavior. The
exchanged item can be Information, Event, Energy or Matter (not illustrated in Figure 2-1). These items
are provided by one Agent and needed by another Agent. The exchange of Matter or Energy is typically
connected with a reduction on the provided side which means if ¢ exchanges wwith @then ¢ is no longer
owner of @ Depending on the definition of reduction this is or is not true for Information. One could

distinguish exchange and sharing if the exchanged item is not reduced.

!SeeD4. 2/ D4. 3 ADANSE Met HDRANSH Corgortiim, @043) fondefinitaot df emergence
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l_;l Resource 2 : H Infrastructure [#]
(from core) . _kmputs prremreare)
outputs satisnes H contract(#l
011 content 0." ffrom core) 0.*
specifications refinedBy
H Exchange [ sender H constituentsysteZ]
ifrom core) o1 {from core) 0.*
receivers
1.7 owns H DynamicityContract  [#]
0.* | relations 0.* 0.1| owner {from core)
participating
0.
- - objectives H Goal [
H systemOfsystems Bl——> H ActiveConstituentSystem 2] — from core)
(from core) {from core) L
o
refinedBy

Figure 2-1: Core Concepts®

Beside Resources also other elements can be provided or needed. Capabilities represent the ability to
perform a certain Activity or Service. Agents perform an Activity if the required inputs for the Activity are
available and the activity is triggered. In most cases Agents are able to perform several Activities exclusive at
the same time and a selection is taken according to what was planned and/or what surfs to feed the Goals.
T h eStraiegyd  Figure 2-2 refers therefore to the performing CS, a planned set of Activities and a set of
addressed Goals. Each Strategy combines Activities in order to reach one or several Goals. An Activity
changes the environmental state if it is performed. It represents the interaction of an Agent with it
environment by definingAariggeuib ang Evend dr conditisndwhidb enhiigtes iaro r .
fActivityoor iServiceA Envi r onment al conditions ar e c &nwowledgedwhichy t
is defined individual ly WoddModel@a)Ary segGiuenca sr MNetivawkodf Activiids, v i
where environmental conditions and Triggers define branches in the execution, is called Service. Agent &

provides wof its Capabilities, Services or Resources (0N 6 @1 O @QEYRI U QVMi €D 1.0

The Need represents the set of elements required by an Agent. Agent ®needs @ & O N O @ QYO B'QD'Q
'Y'Qi & 6 if its'@lanned Activity o requires c If Agent G actually uses the provided elements ¢ of another

Agent wthen

T logbd Ol O AA élement exists)

% Colour-Code: White A Abstract Type; Grey A System; Green A Inter CS relations; Orange A Behaviour-

related;
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T Vodgdl AAA @ elementis required) and
T ltodudy 6 "QQeghd O AGA element is not used by anyone else)
In other words: If a resource exists and it is not used by another Agent then it can be used by an Agent.

Any SoS is some kind of a community and in community different general and specific Roles and Rules can
be identified. Participation in a SoS requires to assume one of the Roles and to obey a subset of the Rules.
A Rule is a restriction of the Behavior of individual Agents or groups of Agents. They are similar to Contracts
but are derived from the SoS and applied to the Agents and not part of their specification. Ideally the Rules
of a SoS are identical to the specification of the participating Agents but typically Rules are real subsets of
the Behavior of the Agents. Even more the Rules typically contradict each other if the associated Role is

ignored.

The most important relation between an Agent and a Rule is the obey-relation. An Agent is in principle free
to operate according only to its specification and does not need to respect any other regulations but in order

to participate in a SoS it has to obey a subset of the Rules of the SoS:
T Agent Gobeys Rulei if the Behavior & of i is a sub-set of @ and
1 &only performs Activities 0 which respect Rule i .

A Role in the SoS defines what is expected from the Agent if it is participating the SoS. Roles combine the
expected behavior in terms of Goals and Rules which mean that behavior is restricted and for active Agents
a certain tendency of behavior is required. As an example for Rules and Roles one could think of any
communication protocol between machines and/or humans. Participating Agents assume a Role in the SoS
which defines the set of Rules they obey and in the case of active Agents a set of Goals they are following.
In the case of passive Agents the Role is just a set of Rules to obey. In the other case the tendency of the
behavior is typically more important than the set of Rules to obey. E.g. in a negotiation phase the Rules to
follow are quite similar for each participant but the position is relevant and decides about the content of the

discussion. The assignment of a Role to an Agent can be done by
1 The Agent itself or
1 Another Agent which has the authority to do so.

In both cases a set of assigned Roles for each Agent is defined. An assigned Role means that the Agent

obeys the Rules associated with the Role and follows the Goals associated with the Role.
With authority two different concepts can be meant.

1. To change the Roles or Rules of another Agent and

2. To change the Roles or Rules themselves.

Both aspects are implemented as relations with the same name but defined for different targets. The first
authority-relation points to a CS (see MActiveConstituentSystemd ) wh i | e sde fidethodtyo eints to(a
Rule. The first aspect is related to the relation between an employee and his/her line manager. By changing

the Role of another Agent, the future behavior of that Agent is strongly impacted. The second aspect is on
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the legislation level and may impact the future behavior of all Agents of the SoS. The first authority aspect is
strongly connected to coordination in general. Coordination means that one Agent & influences the

Behavior of another Agent wby
1. Triggering@® s next Activities,
2. Command ®to perform a certain Activity or to
3. Change ¢® Role/Rules (Authority)

To trigger Activities of other Agents requires requesting some information according to the status of
currently executed and planned Activities/Services. With this information ( s e WorldModeldo Knbwledgeo )
one Agent can influence another Agent even if both are on a par / are equal in terms of command hierarchy.
In contrast the commanding Agent ( s eAetivédConstituentSystemo Js at a higher level in the hierarchy and
this allows the Agent to force the other one to perform a certain Activity. This includes also that the
commander can cancel currently executed Activities. The highest level of this virtual hierarchy is the authority
to change Roles and Rules because this is equivalent to commanding all participating Agents of one SoS.
Note that the hierarchy is only to illustrate the different levels of coordination and does not imply the need of

any defined hierarchy among the participating Agents.

H Knowledge H Authority
0.
‘_@\ H worldModel
B Activity
H Rule
actions | 0.* 0.+ | localviewof
0.1 ]
core) 0.* | refersTo
ST B Transition performedBy™ = implementedsy : Estring | 2 H Rale

= guard : EString assumedBy

0.1
1 - T performedBy usedRole | 0.1 0.1
defaultTransition| tonbitions 0.” userRole

nextTransitions

H strategy

/ H Use
Network /
plan B Networ 1.*| addressedGoals
] lan
1 P H Goal [2]
1/ user 1\, used

(from core)
T isMinimize : EBoolean H ActiveConstituentSystd2h H Infrastructu®}
T isEnabled : EBoolean (from core) (from core)
T priority : Elnt

Figure 2-2: Advanced Concepts

In this section a rough overview about the meta model and the concepts it implements is given. The entire
meta model is contained in the appendix (section 8). The binding brick between the SoS system dynamics
and the dynamicity of the SoS is the (self-) reconfiguration which is explained in the following section. The

two time scales are conceptually clearly separated but interact with each other. The reconfiguration depends
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not only on structural but also on environmental conditions vice versa the system dynamics strongly depends
on the number of CSs and how they are connected. From the modeling point of view the reconfiguration
must contain conditions only evaluable in the system dynamics time scale and each reconfiguration step is
performed without time evaluation in the system dynamics scale. For the specification a certain type of

contract, the fDynamicityContracto , i s i ntroduced to specify the reconfi

22Dynamicity

The dynamicity is the structural change of instances of the SoS model. Those changes include changing the
relations between CSs and creation/deletion of model elements. Typically these changes affect the
participating CSs but could also include the goals/contracts of CSs and the SoS itself. To bridge the gap
between the system dynamics, which refers to the internal state of CSs and the exchange items, and
dynamicity, which refers to the change of the set of CSs and the relations among them, attributes or rather
their values are shared between both aspects. This allows e.g. to model that the fire service is able to buy
new fire brigade if its budget is reaching a certain amount. Thereby feedback loops between increasing
population and the growth of the fire service can be modelled in a logically correct sense (the opposite
direction is symmetric).

The underlying formal semantics was already given in version D6.2.1:
Graph rewriting rules (Koenig, 2004) are recipes that turn a graph into another. The idea is to match a

pattern graph L against sub-graphs of the original graph, and replace the matching sub-graph(s) with another

graph R. The relation between L and R is given by an intermediate graph | which contains their common

elements.

More in detail, graph rewriting rules operate on hypergraphs, which extend regular graphs with hyperedges

that may connect more than just two nodes. In our context, hyperedges correspond to components, while

nodes model their connecting ports and methods. Two components are connected through a port whenever

their corresponding hyperedges link to the node corresponding to the port. Multi-party connections are

readily represented by this model.

Formally, we can represent a hypergraph G as a tuple (V, E, c, I), where V and E are the sets of nodes and
hyperedges; ¢ : E Y V* is a connection function that lists the nodes connected by each of the hyperedges;

andI:EY s is a |l abelling function that gives a name to ¢
could be used to provide names for the ports, as well.

In order to match graphs, we use morphisms. A hypergraph morphism i :GY G6 bet ween Gwo (gr ¢
andG6 i s a pai liyamfig tHfatnmag nodes and edges of G to nodes and edges of GO , preservi
the connections and the labelling of the edges (i.e., (iv(cs(€)) = ccflie(e)) and Ig(e) = I £lie(e)) must hold). A

morphism is injective whenever Gy and (g are both injective. In general, we will not distinguish between

isomorphic graphs.

A graph rewriting rule ris a tuple r = (L, I, R, G, (ig) where (i, : I Y L and (ig : 1 Y R are injective graph

morphisms, and L, | and R are graphs. The idea, as discussed, is to match L with parts of a graph G, and

replace it with R.
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A match is formally modelled as an injective morphism G : L Y G. The application of rule r to the match
yields a new graph H, such that

Vi =(VeT V1) Z Vr En=(EcT E)Z Er
and such that cy and Iy agree with cg and Iz on Er and with cg and Ig on the remaining edges.
An example of a rule formalized in this way is schematically shown in Figure 2-3. The rule takes a control
node connected to at least three other controlled nodes, and splits the control in two to turn a centralized
approach into a distributed approach. The morphisms, which are shown only for the hyperedges (the circles)
for simplicity, provide the necessary connections between the matching pattern and the resulting graph. In
this case, the application of the rule produces the addition of a control node, which is connected to the
original node through a link (a node in the graph).

Figure 2-3: A graph rewriting rule that splits a control node in two

This simple rule can be applied recursively to a graph, in order to split the control. One example of such
application is shown in Figure 2-4, where a centralized control structure is first distributed over two control
nodes, and finally over three control nodes. The rule is such that the original control node retains the
responsibility of communicating with the additional control nodes. Different rules could be devised to also
distribute this responsibility, or to construct additional connections between the nodes.

Figure 2-4: Application of graph rewriting rule to recursively evolve a centralized control structure into a

distributed control structure
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A graph grammar is simply a set of graph rewriting rules. Applied recursively to a starting graph G, the
graph grammar generates a family of new graphs derived from the initial one. In generic graph grammars,
the rules can be (in fact, must be) applied in any order at any time to generate the entire family. In our
context, we use graph grammars as methods to specify the evolution of a system, hence we need a way to
trigger the application of a rule on a graph. This issue, which was already discussed in deliverable D6.10 Ga p
Analysis for existing ®ANSE Gomsbridm| 201R) is $olwed nyaalding gnards to
the rewriting rules that determine when a rule can be applied based on the current state of the system.

2.2.1 Graph grammar semantics
Our objective is to give graph grammar rules a semantics which is consistent with the UPDM behavioural

models. This will enable us to define precisely the meaning of relations such as satisfaction and
compatibility, introduced by the use of contracts, in the context of a dynamically evolving system.
As a starting point, we observe that a UPDM model is composed of various classes of diagrams.
1. Structural diagrams. This class of diagrams defines the structure of the model, including the kind of
components, or blocks, that may be present together with their attributes, as well as the way these
components are connected to build up the system, and the way they are used in typical application

scenarios.

2. Behavioural diagrams. This class of diagrams specifies the behaviour of components in terms of
state-transition systems, dataflow diagrams and/or in terms of message sequence exchanges,
ordered in time.

3. Mapping diagrams. This class of diagrams provides a link between the functions and behaviours
present in the model (specified through the behavioural diagrams) with the blocks and components

that actually execute them (specified in the structural diagrams).

Structural diagrams, when taken all together, determine the overall system component interconnections,
which can be seen as a hypergraph as described earlier. Behavioural diagrams, on the other hand, specify
the actions that must be taken in response to events in the system. At any time, each behavioural diagram
expresses the state in which the system resides, determining the kind of actions that can be taken in
response to the input. The state is composed of states of state machines, the activation state of functional
blocks, and/or the point of execution in message sequence charts. The global state of the system is given by
the collection of the individual active states of each behavioural diagram. Because behaviour is tightly linked
to components through the mapping diagrams, the behavioural diagrams can also be represented as a
graph, which is derived from the structural graph enriched with the behavioural information. Thus, the global
state can be represented by a marking of the behavioural graph which, at any time, indicates in which states
and in which functions the system is currently executing.

According to this discussion, we may therefore represent a UPDM model as a state machine whose states

collect the global state of the system. The state machine is hierarchical and decomposed following the
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structure of the system. Transitions are taken on the basis of the interaction between the different
components. The collection of the actions performed, and the time at which they are performed, can be used
to construct a timed trace of the system, which can be fed to an on-line verification engine or a model
checker to verify the properties of interest. This construction, however, is static, i.e., it does not account for
the application of the graph rewriting rules so that the interconnection of the components is defined and does
not change over the execution of the system.

When a structural change occurs, then we need to change the way components are interconnected, and
possibly add or remove components from the system. Because the behavioural graph is derived from the
structural graph, we have to change the state machine that represents our system. Our objective, however,
would be to have a single model that represents our system across the evolutions, instead of having a
number of different models that represent the different stages of evolutions of the system. This is because a
single semantics would make it easier to define unambiguously what it means for a property to hold for the
entire lifetime of the system.

In order to do that, we follow the technique outlined above and used in Dynamic Input/Output Automata and
include the change in structure of the system as state changes of the model. Each state s of the system is
composed of two parts: a graph G obtained from the current structure in UPDM, and a marking M of the
graph indicating in which state each of the component resides.

Accordingly, we derive the transition relation in two ways:

1. The first follows simply the normal execution of the system, and is consistent with the global
hierarchical state machine defined previously. In this case, the transition is between two states that
have the same graph G, while the marking is updated to reflect the change of states of the
components. At the same time, actions are performed and clocks are advanced according to the

UPDM specification.

2. The second class of transitions is induced by the graph grammar rules. These are applied to the
graph G, and are activated by the guard of the rule which rely on the values and the actions
performed in the states of the system. The rule produces a new graph Go , new att

potentially a new marking and actions.

We call the combined (structure, marking) state a configuration of the system. Hence, traditional transitions
move the system between configurations with the same structure and different marking, whereas graph
rewriting rules give rise to transitions between configurations with different structure, and potentially also
different marking (at the very least, new components must be initialized in their initial state, while others may
actually transition to another state).

The advantage of this approach is that actions are still part of the state machine, and therefore we can still
produce a timed trace, since actions are executed by the system. The timed trace, however, spans the
different evolutions of the system, therefore we can analyse the system with respect to the properties

expressed as contracts. This provides a precise meaning to the verification problem.
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2.2.2 Modeling Concepts
The model of a Systems of Systems or a Constituent System can be interpreted as a graph with labeled

edges and labeled nodes. The nodes represent the kinds of model elements and therefore labeled with the
(fully qualified) name of the model element. Relations bet ween t he model el ement s, su
exampl e, are represented by |l abeled edges in the graph
modeling languages like UML and its derivatives is a basic relation without further attributes. Relations like
Afconnectoro have often further attributes I|ike role na
link-l i ke model artifacts are therefore also nodes in the
information. This kind of mapping from the modeling language artifacts to the graph notation allows defining
rules for changing the model by translating it into a graph, applying the rule and translating it back to the
model. The graph representation is much more generic as the more concrete modeling language and
therefore is the semantics of the rules independent form the modeling language. The semantics is
independent from the modeling language and its semantics. The challenge is to define rules which do not
change the model is such way that its semantics is broken. One could specify a rule which creates elements
without any type. This is critical since many modeling languages require an object to have a type. Those
constraints depend on the modeling language and any rule should be checked if it violates this constrains.
As we have seen, a rule contains a left-hand side (LHS) and a right-hand side (RHS). In general a rule can
be applied to a graph if the LHS is a sub-graph of this graph. The application of the rule changes the sub-
graph matched by the LHS to the RHS. Note that all not matched elements of the graph remain. To model a
rule at least the following roles of model artifacts for a rule are required:

1. Reader: Elements marked in the rule as reader have to be matched but are not changed. They

appear equally in the LHS and RHS.
2. Eraser: LHS elements marked as erasers are removed.
3. Creator: RHS elements marked as creators are added to the graph.

4. Embargo: Since the matching of the LHS defines only the required element one cannot restrict a

match without embargos.

For example: If a component in a model is not connected, a rule could add a connection to another
component having a port free to connect to. The components are nodes as well as their ports. Between the

r el

o

ports andthecomponent s t here is an fAownd or ficontai nment
node because it has a certain type and maybe additional attributes. The LHS of the rule would require two
nodes of type component (or some more detailed type) which must have at least one port each. The match
would be restricted to not have a relation from each of the ports to a connector node using the embargo role.
The RHS would consist of a new connector node with role creator and with relations to the two ports also in
the role creator.

In DANSE, the purpose of graph grammar (the set of graph rewriting rules) is to specify the architectural
changes of a SoS due to dynamicity. The focus is on the creation and deletion of CS during the evolution of

the SoS as well as on the changing relations between those. Each application of a rule to the SoS model

Version Status Date Page
1.0 Final 2014-07-31 16 of 58



DANSE Modelling Formalism, including Domain Metamodel

& Semantics: Focused on support for analysis and DAN iE/

SEVENTH FRAMEWORK
PROGRAMME

optimization

creates a new SoS model in the sense of a snapshot of the SoS. The goal is to be able to model the possible

snapshots of the SoS as a representation of the SoS dynamicity.

23 Contract s

The connection between the modeling and the specification means was already presented in D6.2.1 and is

repeated in the following:

As discussed previously, a system of systems evolves through dynamic changes in its structure to reach a
specific goal, taking advantage of and combining in different ways the capabilities of the constituent systems.
The methods that we have described and that we employ to model the dynamical aspect of the system are
primarily structural: a graph, representing the interconnection and interaction of the constituent systems, or
of parts thereof, is matched against a pattern, possibly mediating through a condition, to result in a new
structure that better adapts to a new situation. This may occur over short time scales, for instance in
response to an emergency situation, or over longer time frames, such as the adoption of a new technology,
or the organic growth of a community and its infrastructure that demand changes in the way these are
coordinated.

While the ability to model structural changes is an essential aspect in the description of the evolving nature
of a system, the evolution of its requirements is likewise fundamental to properly account for the shifting
goals and properties of the system of systems, as well as of the constituent systems. In other words, the
specification in terms of contracts and goals must be adapted alongside the system. The events that trigger
the adoption of a new specification are the same as those that cause the evolution of the structure, and can
therefore be modelled using the same devices described earlier. In this case, different contracts and goals
apply at different times. However, we must investigate the semantics of such an evolving specification to
clarify how one can go about verifying that the system satisfies or does not satisfy its objective. To do this,
we follow the proposal of Zhang et al. (Zhang & Cheng, Using temporal logic to specify adaptive program
semantics, October 2006) (Zhang, Goldsby, & Cheng, Modular verification of dynamically adaptive systems,
2009) who developed a temporal logic formalism to specify adaptive program semantics.

The basic approach consists in viewing the system as a composition of a number of steady-state or non-
adaptive components, which are able to transition from one another in response to a trigger event. The
specification is expressed in terms of goals and contracts, as described in deliverable D6.3.1 (DANSE
Consortium, 2013), which uses first order linear temporal logic as its underlying semantics. The objective is
to provide a specification of the requirements across an adaptation, i.e., a dynamic change in the system.
Temporal logic is in principle able to describe properties over time, and therefore seems suitable for

specifying evolving requirements. In particular, the until operator U appears to be the closest to capturing the

meaning of an evolution, since it is able to express the fact thatacertainpr operty « must hol d
property yUy)holHoesweveer , the semantics of the LTL form
sequence of states @ for all suffixes of 0 starting
typical 'y requires that « holds oaly for a certain interyv
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To solve this problem, LTL can be extended with the so called adapt operator (Zhang & Cheng, Using

temporal logic to specify adaptive program semantics, October 2006) (Zhang, Goldsby, & Cheng, Modular

verification of dynamically adaptive systems, 2009), whi ch we denote as (Yq). I nfo

the operator is the following. Assume the system is specified as a steady-state component C; which

transitions at a certain point in time to another steady-state component C,, thus modelling the evolution of

the system. We say that the system satisfies the req

sati sfies « behéviow of §:hThenpwhen the evolution step takes place, the system stops being

constrained by «, and starts sat.i sffhyei nfgo rymutlhar oqu g h nssa neea

during the evolution phase, i.e., at the change of state between the two steady-state components

Formally, LTL formulas are satisfied by sequences of s

satisfies a formula. Assugsy,ngé)d coween Bbaey( Wrhatttyelm fasan@ o n
 thereexist s a finite suwubseddemwmdéde GOS8 WahWwhleat GB6i s extend

to an infinite sequence;

1T the sequeneBu,l6éd) =saltsi sfies y;
1 andthe sequence (sy,sx+1) Ssatisfies q.

Therefore, the requirements of the syssemevol ve from « to y, through q. I n
can be left out, in which case it simply reduces to the true formula. In other cases, the formula can be used
to express conditions that must be true of the system during the evolution process.

Because the system evolves, the requirements (and likewise the behaviours) of a system can be
distinguished between those that must hold always, i.e., irrespectively of the evolution of the system, and
those instead that change according to the new structure. The former can be specified with the usual
specification methods, while the latter require the use of the adaptive form. According to our methodology,
requirements, goals and contracts are expressed through a number of patterns by which complex formulas
can be constructed (see deliverable D6.3.1). Similarly, we can identify typical evolution patterns that occur
commonly, and that precisely define the expected behaviour before the evolution step, the constraints
necessary for the evolution, the possible restriction during the evolution process, and whether some degree
of overlap can be allowed between the original and the evolved system.

In the following, we summarize three common basic evolution patterns that have been identified in the
literature, and that are applicable to our context.

1 One point evolution. This is the simplest pattern that corresponds to our initial informal example.
Under this pattern, the system initially satisfies a specification S, and after the evolution step is
triggered by a signal A, it eventually satisfies a specification T. The assumption is that the system
reaches a state in which all obligations dictated by S are fulfilled before it evolves into the new

specification T. Including the trigger, the formula that describes this evolution pattern is

(SZ®A) Yq T
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and is visually described in Figure 2-5. As shown, the system transitions to the new configuration

some time after receiving the trigger event.

*
*

O
O
O
O
O ¢
O
O
O
O
O
O
O

Figure 2-5: One point evolution

1 Guided evolution. Unlike the previous case, the system is restricted by a condition R in order for it to
reach a safe state in which the evolution step can take place. This could be useful, for instance,
when the initial system does not guarantee that some safety requirement is reached in some finite
amount of time before a change in the infrastructure can be allowed. The condition R is used to
ensure such conditions. In practice, this means that the system goes through two evolution steps:
the first is used to reach a state in which it is safe to switch to the new configuration, the second

corresponds to the new configuration itself. Formally, this pattern is described by the formula

(SZ(WA YiR)) .Yq

Visually, the trace is shown in Figure 2-6. Unlike the previous case, there are now states that must
satisfy the additional condition R, as well as the original specification S which remains in effect until

the switch is completed.

S T

& VY & VY
¢ 4 A <

c 0 0 0 0 @6 0 06 0 0 0 0 0o o o o

1

A

Figure 2-6: Guided evolution

1 Overlap evolution. A more general form of evolution implies the coexistence of both the initial and
final specification during the evolution step. This can be useful to account for cases in which the

evolution must preserve certain services of the original system for a period of time, while at the same
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time provide the new (presumably enhanced) services which are possible under the new

configuration. Formally

(SZ (@A YiR) ) -Hue)Z(wA Y.TZ( R Ytque))

meaning that initially the specification S is satisfied by the system. Then, once the evolution step
must take place through the event A, the system starts satisfying the specification T as well as a
restrictive condition R, all the while still satisfying S. This is expressed by the first evolution step
tagged by 10ln a second evolution step, which takes place at a later time, and once the system has
reached a state in which it is safe to abandon the specification S (i.e., all the obligations of S have
been satisfied), then only specification T is enforced, and both S and R are dropped. This step is
ma r k e d,. Ricyorially, the situation is shown in Figure 2-7, where the specifications S and T are

allowed to overlap to account for a graceful evolution.

L 2
*

4
*

Q 0 0 0o O O O

Figure 2-7: Overlap evolution

The same evolving requirement may or may not be satisfied by a system depending on when the system is

allowed to transition to the new configuration, and on the state to which the transition is taken. In general, it

is safer to restrict the behaviour of the original system before the evolution, so that the right conditions are

established in order to reach the new configuration in a safe and known initial condition.

The patterns that we have described above can be composed in order to produce more complex evolution

specifications. There are two general forms of composing the patterns.

|l

Parallel composition. In this form, an original system satisfying the specification S may evolve to
different alternative specifications T,, T,, €, in résponse to different triggers. The evolution to be
taken may therefore non-deterministically depend on which trigger is received first (e.g., the
population of a city grows beyond a certain threshold, or a new technology is introduced to support
the communication infrastructure). The resulting specification, in this case, is simply the disjunction
of the individual evolution patterns. The specific pattern that is taken depends on the received

trigger.
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1 Sequential composition. In this form, the system undergoes a humber of different evolutionary steps,
taken in a sequence. To achieve this kind of composition, the evolution pattern used to specify the
first evolutionary step is used as the original source specification S for the second evolutionary step,
and so on. So, using the point evolution pattern, a sequence of two configuration changes from S to

T, and to T, can be formalized as (((SZ ®A) Y q T1) Z @A) Y q T,.

By properly combining the composition patterns one can specify complex evolutionary properties using

simpler specification blocks.
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310verview UPDM
UPDM (Unified Profile for DODAF and MODAF, January 2012) is a unified Profile for DoDAF (Department of

Defence Architecture Framework) and MODAF (Ministry of Defence Architectural Framework). It supports

the capabilities to model architectures of complex systems, System of Systems, and service oriented
architectures.

Acquisition Services

Technical

Viewpoint
Viewpoint Viewpoint
}.7 UPD H
Custom Strategic

Viewpoint All Viewpoint
Views

Figure 3-1: UPDM Viewpoints (Unified Profile for DODAF and MODAF, January 2012)

Viewpoint

Oparational
Viewpoint

Systams ‘

In UPDM model elements are organized in various viewpoints and views. The views and viewpoints which
are defined in UPDM are depicted in Figure 3-1. All these views and viewpoints consist of further sub-views

such that the contained models are more focussed on certain criteria of the design.

In the following we will give a brief description to all views and viewpoints.
- The Acquisition and Project Views (AcV/PV) describe project details, e.g. dependencies between
projects. AcV/PV contains the following sub-views: AcV-1/PV-1 (organizational perspective on
projects), AcV-2/PV-2 (timeline perspective on projects), and PV-3 (projects realizing capabilities).
- The Operational View (OV) isaboutreal-wor | d act i vietri esh ea nidwhfioa ndos wiwh at , ¢

Awhere, 6 fiwhy, 0 an dUnfidddrfie foo DoDAF andi MO®AFQ Jaiduary 2012).
Contained sub-views: OV-1 (mission or scenario description, list of operational elements), OV-2
(operational node relation description), OV-3 (operational information exchange matrix), OV-4 Actual
(relations among resources), OV-4 Typical (organizational structures and interactions), OV-5

(operational activity model), OV-6a (operational rule model), OV-6b (operational state transition
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description), OV-6¢ (operational event-trace description), and OV-7 (information models on

operational architecture).

The All Views (AVs) provide an overview description of the considered architecture. Also scope,
ownership, andti mef r ame ar e r ephe A ecludecaddictioreany ef the t@rms used in
the construction of the architectured (Unified Profile for DoDAF and MODAF, January 2012). AV-1
(overview information), and AV-2 (representation of all elements of architecture as standalone

structures).

- The Strategic Viewpoint (StV) helps to manage the capability management by providing an overall
Enterprise Architecture assessment of the corresponding capabilities and their relationships. In this
view, capabilities are introduced, their integration is described, and the realignment or removal are
modelled. Contained sub-views: CV-7 (mapping of capabilities and services), StV-1 (strategic
context for enterprises), StV-2 (capability taxonomies), StV-3 (capability phasing), StV-4
(dependencies between capabilities), StV-5 (fulflment of capability requirements), and StV-6

(mapping of capabilities and operational activities).

- The Systems Viewpoint (SV) describes realizations of architectures such as resource interaction
specifications (SV-1/SvcV-1) or define specifications on functional and non-functional aspects. The
model s wit hi n reprbsensaltarnate reglizatiomstin tefims of equipment capability of the
operational capabilities expressed through models in the Operational Viewpoint and in the User
Requirements (Unified Profile for DoDAF and MODAF, January 2012). Contained sub-views: SV-
1/SvcV-1 (resource interaction specification), SV-2/SvcV-2 (systems communication description),
SV-3/SvcV-3a (resource interaction matrix), SV-4/SvcV-4 (functionality description), SV-5/SvcV-5
(implementation of operational activities), SV-6/SvcV-6 (system data exchange matrix), SV-7/SvcV-7
(resource performance parameters matrix), SV-8/SvcV-8 (change of capability configurations), SV-
9/SvcV-9 (technology forecast), SV-10a/SvcV-10a (functional, non-functional specifications), SV-
10b/SvcV-10b (resource response description), SV-10c/SvcV-10c (description of interactions
between resources), SV-11/DIV-3 (definition of structure of system data), and SV-12 (service
provision).

- The Service-Orientated View (SOV) is a description of services offered by constituent systems,
which are needed to support the operational domain, which are described in the OV. Contained sub-
views: SOV-1 (service hierarchy and taxonomy), SOV-2 (service specification), SOV-3 (service
mapping view), SOV-4a (service constraints view), SOV-4b (service state model), SOV-4c (service
interaction specification), and SOV-5 (service functionality).

- The Technical Viewpoint consists of elements describing standards, rules, notations, and
c 0 n v e n that applg to the implementation of the system architectureo (Unified Profile for DoDAF
and MODAF, January 2012). Contained sub-views: TV-1 (technical standards), and TV-2

(technology standard changes).
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For more detailed information on the UPDM specification please refer to reference (Unified Profile for DoDAF
and MODAF, January 2012). In the following section we will identify the relevant subset of UPDM which is
relevant to DANSE.

32 Rel evant Subset for DANSE

The goal of this section is to determine the most relevant elements of UPDM to model (snapshot of) Systems
of Systems. For this, we will use the results of section 2, i.e., we will identify those elements of UPDM which
realize the needed concepts defined there.

The relevant concepts for modeling identified in section 2.1 are the following

A Designing and representation of constituent system i We need to design systems individually with

independent purposes.

A Services and capabilities i we need to describe the offered services of constituent systems to their

environment and their capabilities to realize functionalities.
A Collaboration i we need a concept in order to describe collaboration to reach common goals.
A Dynamicity i we need a concept to capture dynamicity.

A Specification and goals i we need to ensure that systems can work correctly together when changing
interconnections and adding or removing systems, and need a concept of defining local and global

goals.

In the following we will analyze the domain meta-model of the UPDM 2.0 specification in order to determine

all modeling elements, which realize the above needed elements.
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{redefines realizes})

«enumerationy
OperationalExchangeKind
MaterielExchange
‘OrganizationalEx
EnergyExchange
InformationExchange

{redefines type}

«commentn
This appr using CS di: for i ion. However, since majority of users are not
proficient in CSD, a constraint of limiting one NodeUsage per Node should be enforced. This creates a
situation where each part (NodeUsage) creates a new type (Node). A tooling should do this automatically.
In case user wants to reuse Nodes within different NodeUsage, a constraint should not be enforced. Users
should create Nodes first, declare OperationalActivities that those Nodes are capable to perform and then
create OV-2 context - LogicalArchitecture, where NodeUsages are linked. NodeUsages should later be linked
to OperationalActions showing what Activities they perform in a given context.

Figure 3-2: Operational View 2

In order to capture the first modeling need, i.e. constituent systems with capabilites, UP DM o fNoded s i
and fBystemResourcedas fCapableElementa For this, consider Figure 3-2, whi ch il l ustrates t
View 20 whi ch i s used OpenationdlNoded relaiens fand pthei localizatiof of f
fOperationalCapabilitiesd The modeling elements of type i Ca p a b | e Eale omGomstitu@ntSystem type

in the DANSE meta model (DMM). Acfivitiesd and especially @AOperational Act
element Activity. The relaton bet ween @A Capabl Adbitiesoig ilust@tedamFigureéd 3-3 in our

mo del t he r el aréquiredCapabsityd bua addressedi the same concept. A Acti vityo i s a

el ement of AOperational Activityo and is related to fiCa
Constituent systems can take on di f f BodeRoled reoleerse.ntl.n UP
Theinterrconstituent system ¢ ommu nOperatibnalBxchariged maed ealte b nv idae pti
Figure 3-2. An A Oper at i o naiZedbetwdemtwaparbcipatirsg nades. So we could specify that
constituent systems taking on specific roles have to communicate via some protocol. In the DMM the
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Exchange el ement is not refined for a specific operation

relations are equivalent to the DMM Exchange.

Figure 3-3: Strategic and Capability View (StV-6)

Figure 3-4: Service Oriented View 5 (SOV-5)
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The above relation of HAcapabl e el e mé&igured3-4,avhich gifies thipab i | i f
relation in a more direct way. Note, that in DoDAF services ar e ¢ &énliceAdcesso |, i . e. the di

SOV-5 maps services to capabilities. Here, the behavior of a service is defined in terms of functions it is
expected to perform. I n UPDM, servi ces Arsevicais flescribedlas a anit éf wdrk o ws :
through which a particular Resource provides a useful result to a consuming Resourceo (Unified Profile for

DoDAF and MODAF, January 2012). So the UDPM service characterization fits to our needed modelling
element of Service.

0.1

1

operationalFlows

performedFunction
realzedOperationalExchanges |*

realzingResourcelnteractions |*

resourceFlows

T resourceFlows |*

realizedNodes

.aaiz'ngResomées

instance |*
instanceOf
1

Figure 3-5: System View 1 (SV-1)

The ASystem Vi eseurck intergction specificatioe. It describes the composition and interaction
of resources. iSystem Resourceso0 are fACapabl eonEituentBestern,ad , i . e

illustrated in the SOV-5 figure. System r esour ces i nt eroaucrtc eV ina echtiore twhittRneds
defines otuhec el Rexer faceo.
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=UPDM2 slomants ALIPDIM2 slemants constrainedElsmant alIPFDMZ nlamants
Ruler < ResourceConstraint SubfectONResourceCon straint
[irarrswaork = Do DA&FT} [Trmrmawark = "WMODAFT] o
«LIPDMZ slaments AUPDM2 shsments «UPDMZ slaments
SypsterniResource Function IsCapableToPerform
} ' ({DoDAF Akas = “ActvityPerormed ByParfommer}
alIPDMZ alamants =UIPDMZ alamanis |
PhysicalArchitecture Physical Resource aUFOMZ alamants
Hrmmawark = "MODAFT} - e
a9 {DoDAF Akas = "Servics”,
| | Frarmawork = “DoDAF}
alPDM2 alements «UIPDM2 slomants “UPDM2 slemants
CapabilityConfiguration ResourcaArtifact Crgranir ationalResource

*UPDMZ slements | *UPDM2 slsments | aLIPDM2 slernents
Software Post Organization
) Alns = *Parson Type~} {DolAF Akas = *Organizaton Type™)

Figure 3-6: System View SV-10a/SvcV-10a

In a further system view, i.e. SV-10a, the functional and non-functional constraints on implementations

of the considered architecture are specified. So with these elements, we can constrain structural and
behavioral elements of the SV viewpoint as resources, functions, data, and ports. fiTthe constraints are
specified in text and may be functional or structuralo(Unified Profile for DODAF and MODAF, January 2012).

33 Mapping of CobMepts to UP

The Table 3-1 lists the mapping between DANSE modeling concepts, UPDM and the DANSE Extension

Profile. The core element the ConstituentSystemi s represented in UPDM in sever .
OResourceRoleo is the system view representation which
AOwno / fiOwn e rrapreserded astfliogical®/ ad Rhysi cal Ar c¢ h ithe esctdinmenead i ndi
t hese relations. In the operational view the AOper at
Afoperational activitieso a'ne twd O gubtypest iofo Eanstituentsystem,a CS.

ActiveConstituentSystem and Infrastrcture, are not distinguished in UPDM but the relation to a goal makes

them distinguishable. Contracts are mapped to SysML-Requirement and -Constraint

DANSE Modeling Concept | UPDM Element Profile Element Comment
ConstituentSystem System(ResourceRole)/ -
Version Status Date Page

1.0 Final 2014-07-31 28 of 58



DANSE Modelling Formalism, including Domain Metamodel

& Semantics: Focused on support for analysis and

SEVENTH FRAMEWORK
PROGRAMME

optimization

S,
DANZE

OperationalNode/ Resource

ActiveConstituentSystem - - Follows
goal
SystemOfSystems Project
Infrastucture - - Does not
follow any
goal
Contract Operational-/Resource Constraint, | GCSL
ServicePolicy, Rule, Requirement
(SysML)
Goal EnterpriseGoal, Mission Sow_goal_attribute
Resource OperationalExchangeltem,
Servicelnterface,
Resourcelnteractionltem
Exchange OperationalExchange,
Servicelnteraction,
Resourcelnteraction
Use
Command Command
HasAuthorityOver (CS) Control
Own / Owner Relations between ResourcePart and
ResourceArtifact
Activity Activity
Rule Rule
Role ResourceRole/
ActualorganizationRole/ NodeRole/
Post/ Organization/
Capability Capability
Table 3-1:Mapping of most relevant DMM elements to UPDM
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41 Model l ing of Stochastic Behaviour

For the CAE, a proposal for stochastic modelling has been worked out and is presented as an overview in
this subsection. It is based on a set of attribute stereotypes that can be applied to any block attribute. This
idea is close to the suggestion of the non-normative distribution extensions made in appendix of the SysML
1.3 specification, but adds the possibility to regenerate a distribution-based random value whenever needed
(and not only at initialization). Being able to regenerate a random number based on a same distribution
enables to model real-world behaviours, such as the time needed for a human to perform a task, which is
repeated over time.

The chosen implementation in the CAE Rhapsody model was driven by the following requirements:

1 be simple enough for the end-user (the SoS architect)

1 be easily readable and exploitable by the run-time technologies

1 be consistent and make sense from a modelling point of view

1 be able to use a single distribution to generate several random values

Stochastic behaviour is classically represented by the concept of random variable. The probability
distribution of the variable is interpreted as the probability that the variable takes up a certain value when it is
observed. To follow this classical approach, given a random variable R that takes values over the reals and a
real variabl e V, the assignment AV = R_observe()o can

providedthatiR_observe()o6 function is an automatically or ma
In order to include stochastic aspects into the UPDM/SysML model, following stereotypes are proposed for
the DANSE profile:

1. Numbers (Real and Integer) with a uniform distribution A min and max properties
2. Numbers with a normal distribution A mean and standard deviation properties
3. Numbers with a custom distribution A cust om éobserveod fdefimed)i on propert)
These three different kinds of generic random variables are a compromise between:
1 Usability A pick one variable kind from a set of predefined ones (library)
1 Expressiveness A enable the user to specify custom ones; furthermore, by allowing all the above
properties to be def imvarthblea soulds8ppartiexpgessipns whick referaon d o
the model, which especially enables to define causal dependencies to the state of the model (e.g.
take time into account)
Please refer to the CAE deliverable to see application examples of these concepts.
Another stochastic aspect that is still to be considered for the modelling formalism is the ability to express the
probability that one transition is taken rather than another one in the behavioural model. The same comment

applies at the dynamicity level, where the creation/deletion of constituent systems or change of relations

between them should be stochastically quantifiable.
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42 Capturing Timing Properties

Timing is a crucial issue in safety critical scenarios at both system and SoS level as the correct functionality

directly depends on the timely operation of all interacting parts of a considered part of a SoS or system. The

execution of services is related to time as these naturally cannot be executed instantaneously. For this, we

need timed behaviour models such as timed automata or timed sequence charts. Due to complexity, it could

be desirable to have black box views to constituent systems, where the exact execution semantics is
abstracted and only relevant properties are kept. For this, contracts are a suitable formalism to capture such
properties. As complex interdependencies between several services executed on a single resource or

system could lead to delays in the executions, it is not obvious whether these contracts are always fulfilled.

As other parts of the SoS depend on these timing contracts, it is a crucial verification task whether all
constituent systems and parts of the SoS adhere to their contracts.

End to end deadlines determine the allowed execution time which is allowed to pass from the triggering of

the corresponding part of the SoS to its response. If such timing issues are violated, the correct functionality

of the system or SoS will be affected. Consider for example Figure 4-1. The considered part of a SoS is
decomposed into further constituent systems on which a set of services are allocated. The part of the
considered SoS is annotated by a contract consisting of an environmental assumption (A) and a guarantee

(G) . It is required, that the del ay h,d) RoetdsnthetSoSpgrger 6 a
assumes that 6ab6 occurs with a particular peri od. As
system which cannot be executed in parallel, it is not obvious whether this decomposition structure satisfies

the requirement..

A: ‘a’ occurs with period t a
G: delay between ‘a’ and ‘g’ is within [t1,tz] Constituent = Constituent 85—
System 1 System 1
d f Y

<<satisfies>>
a e g
Constituent Constituent C
System 1 System 1
b f h
d l
a € System 3 e
<<allocate>> <<allocate>> c;;;::r‘r“e;" - L] ECSOK::T' 9 %
b d f h
|
Service n L ’
Service n

Figure 4-1: Left i part of SoS with end to end deadline; Right i changing structure of SoS part.

Further we have to take into account that changes of the structure may occur. For this, consider the right part
of Figure 4-1. For the new decompoasition structure of the part of the SoS it has to be guaranteed whether the

contract still holds.
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In order to have correctly interacting constituent systems and systems working in a timely manner, both

systems and parts of the SoS need to be annotated by timing contracts. Further, these timing specifications

need to be captured in a rigorous way in order to enable automatic verification. So far, these specifications

cannot be captured by UPDM.

4.3

Concise Model i n@Op(tArma lziatte otnyr e

Concise Modeling is developed in order to solve several main problems in large-scale system prototyping:

f

It is aiding the modeler to have fewer elements in a model that is being created manually in the tool
(concise model), than the actual model that is defined by it (the "expanded" model). The expanded
model will usually have more instances (parts) than the concise model; it will also have realizations of
all the links that are defined in a concise model.

Reducing the number of elements that are in the model we create is very important, because a vast
amount of elements to take into account in large systems makes the model cluttered, reducing
possibility of concentration on important aspects. Thus, a concise model makes it easier to
understand, to modify and update, and to verify the model.

It uses a database structure in order to supplement the concise model information. It means that the
whole "picture" of the expanded model is composed of the information in the concise model and in the
database (It is also dependent on the decisions of the optimization engine, but it is described in the

next point). It is helpful in two ways:

o First, we can have one element in a concise model that will be "populated" from a database list (It
can spare adding a lot of information that is important for the model, but unimportant from the
modeling point of view).

o0 Second, we can have one block in a concise model that will be "realized" with one of the

alternatives we have in our database (It is also related to optimization that is described next).

The concise plug-in processes the concise model and the database information to create an input for
an optimization engine. An optimization engine then performs design space exploration according to

the criteria appearing in the concise model.

o0 Using all the information from the concise model and the database, the plug-in and an optimization
engine create a design space (meaning, all the possible variants of the expanded models,
confirming to the criteria arising from the concise model). Everything in the model influences the
design space - the blocks and their multiplicities, the connections and multiplicities at their ends,
the mappings between levels of abstraction and the constraints that are attached to the blocks or

to the attributes in the model (constraints are written in an OPL language).
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This way we get not only a compact and clear way to model a difficult and large-scale system, but we also
have an optimization program to perform design space exploration and propose us the solutions on the
efficiency frontier of the design space.

Moreover, concise modeling is designed to support the multi-criteria (multi-objective) optimization. Multi-
criteria optimization is very important in real-world designs, where we want to know the values of different
optimization objectives (such as cost, weight, etc) individually for each design alternative, rather than
some single aggregated value. Multi-objective optimization provides more precise and clear information to
the decision maker, than a single-objective optimization. As we want to add more metrics (such as
reliability, complexity, etc), the advantage of the multi-objective optimization approach becomes more
prominent.

The full list of stereotypes and tags using for concise modeling can be found in the D6.5.2 Extension of
standard profiles for DANSE Modeling (DANSE Consotium, 2014).

4.3.1 Abstraction layers and mappings

The concise modeling approach has three layers in three different model packages as represented in Figure

4-2: Packages of a concise model.

=] [b— SeS
#-[2 Components
— ~[J Packages
+§j Func2Tech
: +tl Functional
: +@ Functionallib
+K] Geometrical
. @-57) PredefinedTypes (REF)
. @-57) PredefinedTypesCpp (REF)
. @-57) Tech2Geo
. @-57 Technical
: +gj TechnicalLib

Figure 4-2: Packages of a concise model

1 Functional layer i serves as the requirements definition for the system architecture.

0 May be modeled concisely in some cases, but all parts and links will be explicit
0 May be a result of a higher abstraction iteration using the same approach
0 May have connecting links
All parts and links of functional layer must have <<functional>> stereotype.

9 Technical layer i architecture modeling plane. Modeling is based on the requirements of the functional
layer. The objects on this plane usually represent real components (or subcomponents) and real flows
between them (data, energy). All parts and links of technical layer must have <<technical>>

stereotype.
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1 Geometrical layer 7 used to index the objects of the technical layer. Sometimes this layer directly
represents the geometry of the system and is used as such. For example the instances of this layer
may represent possible placeholders for the actual components on the technical plane with the
optimization process tasked with finding the right combination of components and their locations.
Alternatively, this layer can be an abstract collection of indices bounded by constraints. All parts and
links of geometrical layer must have <<geometrical>> stereotype

1 Mapping i the way to relate one layer to the other. Mapping is done by using the SysML «allocate»
dependency. An object on the functional plane can only be mapped to one object on the technical
plane, as otherwise there would be ambiguity in the definition. However, any number of objects on the
functional plane can be mapped to a single object on the technical plane. If a multiple mapping is
indicated, the meaning is that the optimization must select the best mapping subject to constraints and
rules. Mappings from functional to technical layer must have <<mappedTo>> stereotype. Mappings

from technical to geometrical layer must have <<allocateTo>> stereotype.

4.3.2 Catalogues

A technical part in the concise model represent some physical element (or number of physical elements) of
the some specific type. In general case the actual parameters of this physical element (or these physical
elements) are not known during modelling process, but must be chosen from some catalogue by
optimization solver. l.e., simplifying the actual process, we can say that optimization solver "picks" most
suitable physical element in place of technical part in the concise model from the catalogue of different
(having different attributes) physical elements of specific type. To achieve this behaviour in the concise
model a <<catalog>> stereotype must be applied to the technical block from which corresponding technical
part instantiated. The <<catalog>> stereotype also must be applied to all attributes of this block which
values are chosen from the catalogue. For example, if we model antennas for LTE network and name, cost
and antennald parameters must be chosen from catalogue of different LTE antennas, then we must create
block with corresponding attributes and apply <<catalog>> stereotype to this block and to the corresponding
attributes as shown on Figure 4-3: Example of usage of catalogues

«Block,catzloge
AntennalTE

Values

E «catalog» name:RhpString

= «catalog» cost:float

IQ| B «catalog» antennald:int

Figure 4-3: Example of usage of catalogues
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4.3.3 Typed connectors

Connectors between technical parts of the system model are often represents various physical elements
such as cables, shafts, ducts, pipes, etc. The typed connectors used to bring this relationship into concise
model. Typed connector is a connector that has some technical part behind it. This technical part is of type
(of block) which represent some class of physical elements serving as connectors e.g. power cables, water
pipes, etc. Applying stereotype <<TypedConnector>> to a connector causes a tag "type" to appear (to be
added) among the properties of this connector. The required block type must be assigned to this tag as

shown on Figure 4-4: Setting type for typed connector.

connector : c_PDBE_ACbhusL in ArchT EES

. Generall Description  1ads | Froperties

BA=p

=l| Concise

| TypedConneckor

bvpe Cable_Pow

~ Quick Add

M arme; I W alue: I Add

Locate | oK, | Aeply |J

Figure 4-4: Setting type for typed connector.

In the example, the type of connector is Cable_Pow (Power Cable). The meaning is that the paths between
the items in the technical layer will not be just some connectors, but each will be a part of block Cable_Pow,
and the attribute values of these connectors will be filled in an appropriate way. The most important is that
the plug-in and the optimization will fill the distances that the cables cover, using the geometrical data from

the database, making it possible for us to know, for example, the weight and the cost of the cables.

4.3.4 Optimization model parameters
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Parts, links, dependencies and attributes that haven't <<optimized>> stereotype are treated as optimization
model parameters. Parameters can be taken directly from the model or from the related database. For those
parameters which values are taken from database all corresponding SysML elements must have
<<inventory>> stereotype. Setting <<inventory>> stereotype on part, link or dependency implies that
corresponding element represent some table of corresponding "physical”" elements in the database. Each

row of this table must include values of <<inventory>> attributes of corresponding element.

Concise model also allow creating auto-calculating parameters. The values of auto-calculating parameters is
not known during modelling process but can be calculated from values of other parameters using some
mathematical formulas. To create auto-calculated parameter <<optimized>> and <<derived>> stereotypes
must be applied to the attribute represented corresponding parameter. The value of this attribute calculated
using attached constraint that typically have <<sow_assignment>> stereotype (other concise constraint
stereotypes are also can be applied). On the Figure 4-5: Usage of auto-calculating parameters we can see
different auto-calculating parameters representing length, cost and weight of power cable. The values of
these parameters depending from actual cable length, i.e. calculated from distance of geometrical route to
which "physical" cable can be allocated. Formulas for the parameters calculation are shown in the
corresponding constraints.

{0}
{length = Distance{getallocatedTo()]}

«Block,catalog»
Cable_Pow
o Values
L{J cost = CostPerM * Distance[getAllocatedTo()]H J Tw «derived, optimized» cost:RhpReal

;- «catalog» CostPerM:RhpReal
= «derived,optimized» length:RhpReal
©) ¥ «catalog» MaxPower:RhpReal

Ly -~ % A
{weight = WeightPerM * Distance[getallocatedTo()]} f‘ «denved,optnyzed» weight:RhpReal
= «catalog» WeightPerM:RhpReal

Figure 4-5: Usage of auto-calculating parameters

4.3.5 Decision variables

All parts, links, dependencies and attributes having <<optimized>> stereotype (and not having <<derived>>
stereotype) are treated as decision variables. Particular "physical" part, link or dependency can be realized
or not realized in the optimal architecture according to the decision of the optimization engine. Concise plug-
in add decision variable to each element having stereotype <<optimized>>. This variable gets value 1 if
corresponding "physical" elements realized in the optimal architecture and 0 otherwise. The variable is not a
part of the concise model, but can be used in the optimization constraints. The variable can be accessed by

using <isChosen>, <isSelected> or <part> name.
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4.3.6 Optimization goals

An attribute having <<sow_goal_attribute>> became one of the optimization goals. Multiply optimization
goals can be defined for the one model. In this case optimization engine instead of one optimal solution
calculates set of optimal solution called Pareto frontier. On the Figure 4-6: Usage of multiply optimization
goals we have three different optimization goals (optimize system cost, system weight and total cable
length).

«Block, cataloge
ArchT

Values
B «technical,catalog» name:RhpString
B «pptimized, sow_goal_attribute» systemCost:RhpReal
B «pptimized, sow_goal_attribute» systemWeight RhpReal
E «optimzed,sow_goal_attribute totalCabled ength:RhpReal

Figure 4-6: Usage of multiply optimization goals

The attribute marked by this stereotype equipped with following tags:
A Action: can be minimize or maximize depending on optimization goal.

Description: string described the optimization goal.

isEnabled: can be true or false. Setting this attribute to be false "turned off" selected optimization
goal.

A Priority: set priority for selected optimization goal.

Example of settings for these tags is shown on Figure 4-7: Setting tags of optimization goal attribute. In the

example the optimization goal is to minimize system cost and this goal have high priority (priority=1).
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Attribute : systemCost in ArchT ~ [

E-General IADescriBtion I_Re@@[‘i \ Tags jiPmpeftiesi

i
X

= condise

=] sow_goal_attribute
action minimize
description
isEnabled
priority 1

Quick Add

Name: Value: [ Add

Locate OK

Figure 4-7: Setting tags of optimization goal attribute.

4.3.7 Explicit constraints

Constraints of the optimization model can be defined in the explicit or implicit form. Explicit constraints are
defined using SysML constraint element. The corresponding constraint element must have
<<sow_optimization>> stereotype.  Additionally <<sow_constraint>> stereotype can be applied to
optimization constraint. The attribute marked by <<sow_constraint>> stereotype equipped with following
tags:

A Description: string described the constraint.

A isEnabled: can be true or false. Setting this attribute to be false "turned off" selected constraint.

A isVisible: can be true or false.
Example of settings for these tags is shown on Figure 4-8: Setting tags for optimization constraint.

Explicit constraints are defined by using GSCL extension for optimization (see D6.3.2 Specification of the
goal contracts specification language ( (DANSE Consortium, 2013))).
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Figure 4-8: Setting tags for optimization constraint

4.3.8 Implicit constraints

Implicit constraints are not specified in the concise model by using some specific SysML element, but
translated into optimization code from concise model mappings, multiplicities and from stereotypes related to

special algebras.

4.3.8.1 Constraints from multiplicities

Each part in the internal block diagram has multiplicity. The multiplicity can be set as a single number (1),
interval of numbers (1..10) or any number (*). In case when multiplicity defined as number or interval of
numbers it is automatically translated into constraint in the optimization code. l.e. if some part have
multiplicity 1, then there is exactly one element of this type must be in the optimal architecture, or if some
part have multiplicity 1..10, then optimal architecture can't have less then one or greater then ten

corresponding elements.

Each link also has multiplicities on its ends. These multiplicities are defined in the same way as for the parts.
In this case meaning of multiplicities is number of links between corresponding parts. l.e. if on the one end of
the link we have multiplicity 1 and on the other end we have multiplicity *, then each element from the

second end must be connected to exactly one element from the first end.
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