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1 Introduction 

 

This deliverable summarizes the first two versions and is focused on the support of analysis and 

optimization.  

The first part contains the modelling concepts for Systems of Systems (SoSs) modelling including the 

semantic concepts. Three different aspects are used to model the SoS specific characteristics of systems. 

The first are the manifold types of Constituent Systems (CSs) and their (interaction) relations. Beside the 

technical aspect of interaction also a mean for an intention or goal is required. The second part is the 

evolutionary development of the SoS and each participating CS. Specifications for behaviour of system 

dynamics and evolution are addressed as third aspect. The section 2.1 Modeling SoS is completely 

reworked while section 2.2 Dynamicity and 2.3 Contracts are only updated with minor changes. The second 

part links those concepts to the UPDM language and the extensions for UPDM as defined in the extension 

profile (D6.5.2). Section 3.3 Mapping of Concepts to UPDM is completely reworked as well. This document is 

the harmonization of the first two documents with a focus on the common modelling concepts for modelling 

SoS.  

Section 4 Extensions of UPDM covers also a stable part since the UPDM model did not changed as well as 

the identified gap. This section is a copy from the previous version of the document (D6.2.2). The presented 

extensions feed the analysis and optimization while refining and/or extending the SoS model itself. In the 

appendix the DANSE meta model is documented in detail which has not been done in the previous versions 

of this document.  
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2 SoS Modeling Concepts and Semantics 

 

The modeling formalism is threefold. The SoS ñSnapshotò covers all participation Constituent Systems (CSs) 

and relations/interconnections among them. Data and Command exchange between these CS is derived 

from the behaviors of the individual CSs and their interconnections. The evolution model addresses the 

evolutionary aspect of SoS i.e. the change of the set of participating CSs or the change of the 

interconnections among them. This dynamics is called ñdynamicityò in the following. The combination of the 

behavior of the CSs and the dynamicity imply the overall SoS behavior which include e.g. the adaptation to 

new environmental conditions. To analyze or optimize the SoS one could use all details in the CSs models 

and the composition of those as SoS snapshot or apply the mean of contract. Contracts restrict the dynamics 

of the CSs or the SoS on both levels. See (Baumgart, et al., 2011), (Hungar, 2011), (Damm, Hungar, Josko, 

Peikenkamp, & Stierand, 2011) and (Meyer, 1992) for details how this is applied to the CS behaviors and 

(Etzien, Gezgin, Fröschle, Henkler, & Rettberg, 2013), (Gezgin, Etzien, Henkler, & Rettberg, 2012) and 

(Etzien & Gezgin, Correct by Prognosis: Methodology for a Contract-based refinement of Evolution Models, 

2014 (to be published)) for how to apply contracts on dynamicity. The DANSE model is defined as ὛέὛ

ὍȟὅὛȟὙȟὈȟὋὅ  with Ὅ the possibly empty instantiation of the CSs, ὅὛ the set of CSs types, Ὑ the set of 

relations/interconnections between CSs, Ὀ the dynamic behavior of the SoS (aka Dynamicity), Ὃὅ the set of 

goals and contracts of the SoS. The set of constituent systems ὅὛ consists of all types of CSs. The instances 

of  ὧίɴὅὛ are connected in the instantiation Ὅ with different relations Ὑ to each other, to environmental 

elements e.g. resources and to the contracts and goals in Ὃὅ.  

In the following each of these three concepts are discussed in detail. 

 

2.1 Modeling SoS 

The modeling formalism is based upon several concepts which are the building blocks of an ontology. The 

ontology is used to give an intuitive semantics. Derived from this a meta model is defined which is them 

mapped to the UPDM meta model. 

In (Maier, 1999) five different criteria to distinguish complex from systems of systems are presented. Those 

criteria refer amongst others to two degrees of freedom (operational and managerial independence) which 

imply the notion of an agent for a CS.  

An Agent represents a CS. This system has a specification or Contract. Agents can be passive or active, 

which means that they follow their own Goals, or even entire SoS. As illustrated in Figure 2-1, the meta 

model element ñConstituentSystemò implements the Agent concept with the two sub-types the active 

ñActiveConstituentSystemò and the passive ñInfrastructureò. Ownership is a relation between Agents which 

implies that if ὥ owns ὦ then ὦ is not fully independent in terms of management from ὥ.  
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A SoS consists of several participating Agents which themselves might be SoSs. The participation relation 

is not exclusive. One Agent might be participating in several SoSs at the same time. It also does not 

necessarily imply the loss of managerial or operational independence of the Agent. Participation is a 

precondition for emergent
1
 Behavior and evolutionary development. The creation and/or deletion of Agent in 

a SoS is directly reflected with the set of participating Agents.  

The Contract restricts the Behavior observable on the Interface of the agent. Contracts use the interface 

variables and define the valid or invalid behavior over those variables. The Behavior of a CS contains all 

possible system dynamics of the CS. System dynamics are the value assignments per interface variable, per 

point in time. This (timed) trace might be infinite and characterized via temporal logic (see D6.3.1/D6.3.2 

GCSL Specification (DANSE Consortium, 2013)). If an Agent implements its Contracts, it satisfies its 

Contracts. As long as the analysis did not have proved that the Agent satisfies the Contracts there is a 

relation shall satisfy that indicates which prove obligations are still left. In the meta model this is 

represented by two lists which contain the associated and the satisfied Contracts. 

Each active Agent follows a set of Goals, which is a function over a set of variables and is defined over 

potentially infinite domains and only the tendency is relevant. A Goal is to increase or decrease the value of 

the function by interaction with the environment (incl. other Agents). The ñContractò element represents the 

specification of the Agent and ñGoalò the objectives of the active Agents. 

Within a SoS several Agents exchange different kinds of Resources as part of their Behavior. The 

exchanged item can be Information, Event, Energy or Matter (not illustrated in Figure 2-1). These items 

are provided by one Agent and needed by another Agent. The exchange of Matter or Energy is typically 

connected with a reduction on the provided side which means if ὥ exchanges ὼ with ὦ then ὥ is no longer 

owner of ὼ. Depending on the definition of reduction this is or is not true for Information. One could 

distinguish exchange and sharing if the exchanged item is not reduced. 

 

                                                      

1
 See D4.2/D4.3 ñDANSE Methodologyò deliverable (DANSE Consortium, 2013) for definition of emergence 
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Figure 2-1: Core Concepts
2
 

Beside Resources also other elements can be provided or needed. Capabilities represent the ability to 

perform a certain Activity or Service. Agents perform an Activity if the required inputs for the Activity are 

available and the activity is triggered. In most cases Agents are able to perform several Activities exclusive at 

the same time and a selection is taken according to what was planned and/or what surfs to feed the Goals. 

The ñStrategyò in Figure 2-2 refers therefore to the performing CS, a planned set of Activities and a set of 

addressed Goals. Each Strategy combines Activities in order to reach one or several Goals. An Activity 

changes the environmental state if it is performed. It represents the interaction of an Agent with it 

environment by defining a subset of itsô Behavior. A Trigger is any Event or condition which initiates an 

ñActivityò or ñServiceò. Environmental conditions are covered by the meta model element ñKnowledgeò which 

is defined individually for each CS as its local view (ñWorldModelò). Any sequence or ñNetworkò of Activities, 

where environmental conditions and Triggers define branches in the execution, is called Service. Agent ὥ 

provides ὼ of its Capabilities, Services or Resources (ὼɴ ὅὥὴὥὦὭὰὭὸώ᷾ὛὩὶὺὭὧὩί᷾ὙὩίέόὶὧὩ .  

The Need represents the set of elements required by an Agent. Agent ὥ needs ὼɴ ὅὥὴὥὦὭὰὭὸώ᷾ὛὩὶὺὭὧὩ᷾

ὙὩίέόὶὧὩ if its planned Activity ὸ requires ὼ. If Agent ὥ actually uses the provided elements ὼ  of another 

Agent ὦ then 

¶ ὼᶅȡὦ ÐÒÏÖÉÄÅÓ ὼ, (Ą element exists) 

                                                      

2
 Colour-Code: White Ą Abstract Type; Grey Ą System; Green Ą Inter CS relations; Orange Ą Behaviour-

related;  
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¶ ὼᶅȡὥ ÎÅÅÄÓ ὼ (Ą element is required) and 

¶  ὼᶅȡ ɰὧɴ ὃὫὩὲὸίȡὧ ÕÓÅÓ ὼ (Ą element is not used by anyone else) 

In other words: If a resource exists and it is not used by another Agent then it can be used by an Agent.  

Any SoS is some kind of a community and in community different general and specific Roles and Rules can 

be identified. Participation in a SoS requires to assume one of the Roles and to obey a subset of the Rules. 

A Rule is a restriction of the Behavior of individual Agents or groups of Agents. They are similar to Contracts 

but are derived from the SoS and applied to the Agents and not part of their specification. Ideally the Rules 

of a SoS are identical to the specification of the participating Agents but typically Rules are real subsets of 

the Behavior of the Agents. Even more the Rules typically contradict each other if the associated Role is 

ignored.  

The most important relation between an Agent and a Rule is the obey-relation. An Agent is in principle free 

to operate according only to its specification and does not need to respect any other regulations but in order 

to participate in a SoS it has to obey a subset of the Rules of the SoS: 

¶ Agent ὥ obeys Rule ὶ if the Behavior ὦ of ὶ is a sub-set of ὦ and 

¶ ὥ only performs Activities ὸ which respect Rule ὶ. 

A Role in the SoS defines what is expected from the Agent if it is participating the SoS. Roles combine the 

expected behavior in terms of Goals and Rules which mean that behavior is restricted and for active Agents 

a certain tendency of behavior is required. As an example for Rules and Roles one could think of any 

communication protocol between machines and/or humans.  Participating Agents assume a Role in the SoS 

which defines the set of Rules they obey and in the case of active Agents a set of Goals they are following. 

In the case of passive Agents the Role is just a set of Rules to obey. In the other case the tendency of the 

behavior is typically more important than the set of Rules to obey. E.g. in a negotiation phase the Rules to 

follow are quite similar for each participant but the position is relevant and decides about the content of the 

discussion. The assignment of a Role to an Agent can be done by  

¶ The Agent itself or 

¶ Another Agent which has the authority to do so. 

In both cases a set of assigned Roles for each Agent is defined. An assigned Role means that the Agent 

obeys the Rules associated with the Role and follows the Goals associated with the Role.  

With authority two different concepts can be meant.  

1. To change the Roles or Rules of another Agent and 

2. To change the Roles or Rules themselves. 

Both aspects are implemented as relations with the same name but defined for different targets. The first 

authority-relation points to a CS (see ñActiveConstituentSystemò) while the other (see ñAuthorityò) points to a 

Rule. The first aspect is related to the relation between an employee and his/her line manager. By changing 

the Role of another Agent, the future behavior of that Agent is strongly impacted. The second aspect is on 
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the legislation level and may impact the future behavior of all Agents of the SoS. The first authority aspect is 

strongly connected to coordination in general. Coordination means that one Agent ὥ influences the 

Behavior of another Agent ὦ by 

1. Triggering ὦôs next Activities, 

2. Command ὦ to perform a certain Activity or to 

3. Change ὦôs Role/Rules (Authority) 

To trigger Activities of other Agents requires requesting some information according to the status of 

currently executed and planned Activities/Services. With this information (see ñWorldModelò/òKnowledgeò) 

one Agent can influence another Agent even if both are on a par / are equal in terms of command hierarchy. 

In contrast the commanding Agent (see ñActiveConstituentSystemò) is at a higher level in the hierarchy and 

this allows the Agent to force the other one to perform a certain Activity. This includes also that the 

commander can cancel currently executed Activities. The highest level of this virtual hierarchy is the authority 

to change Roles and Rules because this is equivalent to commanding all participating Agents of one SoS. 

Note that the hierarchy is only to illustrate the different levels of coordination and does not imply the need of 

any defined hierarchy among the participating Agents. 

 

Figure 2-2: Advanced Concepts 

In this section a rough overview about the meta model and the concepts it implements is given. The entire 

meta model is contained in the appendix (section 8). The binding brick between the SoS system dynamics 

and the dynamicity of the SoS is the (self-) reconfiguration which is explained in the following section. The 

two time scales are conceptually clearly separated but interact with each other. The reconfiguration depends 



 

DANSE Modelling Formalism, including Domain Metamodel 

& Semantics: Focused on support for analysis and 

optimization 
 

 

Version Status Date Page 

1.0 Final 2014-07-31 12 of 58 

 

not only on structural but also on environmental conditions vice versa the system dynamics strongly depends 

on the number of CSs and how they are connected. From the modeling point of view the reconfiguration 

must contain conditions only evaluable in the system dynamics time scale and each reconfiguration step is 

performed without time evaluation in the system dynamics scale. For the specification a certain type of 

contract, the ñDynamicityContractò, is introduced to specify the reconfiguration of the SoS.  

2.2 Dynamicity 

The dynamicity is the structural change of instances of the SoS model. Those changes include changing the 

relations between CSs and creation/deletion of model elements. Typically these changes affect the 

participating CSs but could also include the goals/contracts of CSs and the SoS itself. To bridge the gap 

between the system dynamics, which refers to the internal state of CSs and the exchange items, and 

dynamicity, which refers to the change of the set of CSs and the relations among them, attributes or rather 

their values are shared between both aspects. This allows e.g. to model that the fire service is able to buy 

new fire brigade if its budget is reaching a certain amount. Thereby feedback loops between increasing 

population and the growth of the fire service can be modelled in a logically correct sense (the opposite 

direction is symmetric).   

The underlying formal semantics was already given in version D6.2.1: 
Graph rewriting rules (Koenig, 2004) are recipes that turn a graph into another. The idea is to match a 

pattern graph L against sub-graphs of the original graph, and replace the matching sub-graph(s) with another 

graph R. The relation between L and R is given by an intermediate graph I which contains their common 

elements. 

More in detail, graph rewriting rules operate on hypergraphs, which extend regular graphs with hyperedges 

that may connect more than just two nodes. In our context, hyperedges correspond to components, while 

nodes model their connecting ports and methods. Two components are connected through a port whenever 

their corresponding hyperedges link to the node corresponding to the port. Multi-party connections are 

readily represented by this model. 

Formally, we can represent a hypergraph G as a tuple (V, E, c, l), where V and E are the sets of nodes and 

hyperedges; c : E Ÿ V* is a connection function that lists the nodes connected by each of the hyperedges; 

and l : E Ÿ ȿ is a labelling function that gives a name to each of the hyperedges. A node labelling function 

could be used to provide names for the ports, as well. 

In order to match graphs, we use morphisms. A hypergraph morphism ű : G Ÿ Gô between two graphs G 

and Gô is a pair of functions űV and űE that map nodes and edges of G to nodes and edges of Gô, preserving 

the connections and the labelling of the edges (i.e., űV(cG(e)) = cGô(űE(e)) and lG(e) = lGô(űE(e)) must hold). A 

morphism is injective whenever űV and űE are both injective. In general, we will not distinguish between 

isomorphic graphs. 

A graph rewriting rule r is a tuple r = (L, I, R, űL, űR) where űL : I Ÿ L and űR : I Ÿ R are injective graph 

morphisms, and L, I and R are graphs. The idea, as discussed, is to match L with parts of a graph G, and 

replace it with R. 



 

DANSE Modelling Formalism, including Domain Metamodel 

& Semantics: Focused on support for analysis and 

optimization 
 

 

Version Status Date Page 

1.0 Final 2014-07-31 13 of 58 

 

A match is formally modelled as an injective morphism ű : L Ÿ G. The application of rule r to the match ű 

yields a new graph H, such that 

VH = (VG ï VL) ẕ VR              EH = (EG ï EL) ẕ ER 

and such that cH and lH agree with cR and lR on ER and with cG and lG on the remaining edges. 

An example of a rule formalized in this way is schematically shown in Figure 2-3. The rule takes a control 

node connected to at least three other controlled nodes, and splits the control in two to turn a centralized 

approach into a distributed approach. The morphisms, which are shown only for the hyperedges (the circles) 

for simplicity, provide the necessary connections between the matching pattern and the resulting graph. In 

this case, the application of the rule produces the addition of a control node, which is connected to the 

original node through a link (a node in the graph). 

 

 

Figure 2-3: A graph rewriting rule that splits a control node in two 

This simple rule can be applied recursively to a graph, in order to split the control. One example of such 

application is shown in Figure 2-4, where a centralized control structure is first distributed over two control 

nodes, and finally over three control nodes. The rule is such that the original control node retains the 

responsibility of communicating with the additional control nodes. Different rules could be devised to also 

distribute this responsibility, or to construct additional connections between the nodes. 

 

 

Figure 2-4: Application of graph rewriting rule to recursively evolve a centralized control structure into a 

distributed control structure 

L RIrL rR
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A graph grammar is simply a set of graph rewriting rules. Applied recursively to a starting graph G0, the 

graph grammar generates a family of new graphs derived from the initial one. In generic graph grammars, 

the rules can be (in fact, must be) applied in any order at any time to generate the entire family. In our 

context, we use graph grammars as methods to specify the evolution of a system, hence we need a way to 

trigger the application of a rule on a graph. This issue, which was already discussed in deliverable D6.1òGap 

Analysis for existing SoS Modelling Formalismsò (DANSE Consortium, 2012), is solved by adding guards to 

the rewriting rules that determine when a rule can be applied based on the current state of the system. 

  

 

2.2.1 Graph grammar semantics 

Our objective is to give graph grammar rules a semantics which is consistent with the UPDM behavioural 

models. This will enable us to define precisely the meaning of relations such as satisfaction and 

compatibility, introduced by the use of contracts, in the context of a dynamically evolving system. 

As a starting point, we observe that a UPDM model is composed of various classes of diagrams. 

1. Structural diagrams. This class of diagrams defines the structure of the model, including the kind of 

components, or blocks, that may be present together with their attributes, as well as the way these 

components are connected to build up the system, and the way they are used in typical application 

scenarios. 

2. Behavioural diagrams. This class of diagrams specifies the behaviour of components in terms of 

state-transition systems, dataflow diagrams and/or in terms of message sequence exchanges, 

ordered in time. 

3. Mapping diagrams. This class of diagrams provides a link between the functions and behaviours 

present in the model (specified through the behavioural diagrams) with the blocks and components 

that actually execute them (specified in the structural diagrams). 

Structural diagrams, when taken all together, determine the overall system component interconnections, 

which can be seen as a hypergraph as described earlier. Behavioural diagrams, on the other hand, specify 

the actions that must be taken in response to events in the system. At any time, each behavioural diagram 

expresses the state in which the system resides, determining the kind of actions that can be taken in 

response to the input. The state is composed of states of state machines, the activation state of functional 

blocks, and/or the point of execution in message sequence charts. The global state of the system is given by 

the collection of the individual active states of each behavioural diagram. Because behaviour is tightly linked 

to components through the mapping diagrams, the behavioural diagrams can also be represented as a 

graph, which is derived from the structural graph enriched with the behavioural information. Thus, the global 

state can be represented by a marking of the behavioural graph which, at any time, indicates in which states 

and in which functions the system is currently executing. 

According to this discussion, we may therefore represent a UPDM model as a state machine whose states 

collect the global state of the system. The state machine is hierarchical and decomposed following the 
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structure of the system. Transitions are taken on the basis of the interaction between the different 

components. The collection of the actions performed, and the time at which they are performed, can be used 

to construct a timed trace of the system, which can be fed to an on-line verification engine or a model 

checker to verify the properties of interest. This construction, however, is static, i.e., it does not account for 

the application of the graph rewriting rules so that the interconnection of the components is defined and does 

not change over the execution of the system. 

When a structural change occurs, then we need to change the way components are interconnected, and 

possibly add or remove components from the system. Because the behavioural graph is derived from the 

structural graph, we have to change the state machine that represents our system. Our objective, however, 

would be to have a single model that represents our system across the evolutions, instead of having a 

number of different models that represent the different stages of evolutions of the system. This is because a 

single semantics would make it easier to define unambiguously what it means for a property to hold for the 

entire lifetime of the system. 

In order to do that, we follow the technique outlined above and used in Dynamic Input/Output Automata and 

include the change in structure of the system as state changes of the model. Each state s of the system is 

composed of two parts: a graph G obtained from the current structure in UPDM, and a marking M of the 

graph indicating in which state each of the component resides. 

Accordingly, we derive the transition relation in two ways: 

1. The first follows simply the normal execution of the system, and is consistent with the global 

hierarchical state machine defined previously. In this case, the transition is between two states that 

have the same graph G, while the marking is updated to reflect the change of states of the 

components. At the same time, actions are performed and clocks are advanced according to the 

UPDM specification. 

2. The second class of transitions is induced by the graph grammar rules. These are applied to the 

graph G, and are activated by the guard of the rule which rely on the values and the actions 

performed in the states of the system. The rule produces a new graph Gô, new attributes and 

potentially a new marking and actions. 

We call the combined (structure, marking) state a configuration of the system. Hence, traditional transitions 

move the system between configurations with the same structure and different marking, whereas graph 

rewriting rules give rise to transitions between configurations with different structure, and potentially also 

different marking (at the very least, new components must be initialized in their initial state, while others may 

actually transition to another state). 

The advantage of this approach is that actions are still part of the state machine, and therefore we can still 

produce a timed trace, since actions are executed by the system. The timed trace, however, spans the 

different evolutions of the system, therefore we can analyse the system with respect to the properties 

expressed as contracts. This provides a precise meaning to the verification problem. 
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2.2.2 Modeling Concepts 

The model of a Systems of Systems or a Constituent System can be interpreted as a graph with labeled 

edges and labeled nodes. The nodes represent the kinds of model elements and therefore labeled with the 

(fully qualified) name of the model element. Relations between the model elements, such as the ñtypeò for 

example, are represented by labeled edges in the graph interpretation. Note that the ñtypeò relation in many 

modeling languages like UML and its derivatives is a basic relation without further attributes. Relations like 

ñconnectorò have often further attributes like role names of each end of the connector. Those more complex 

link-like model artifacts are therefore also nodes in the graph representation because they ñcarryò additional 

information. This kind of mapping from the modeling language artifacts to the graph notation allows defining 

rules for changing the model by translating it into a graph, applying the rule and translating it back to the 

model. The graph representation is much more generic as the more concrete modeling language and 

therefore is the semantics of the rules independent form the modeling language. The semantics is 

independent from the modeling language and its semantics. The challenge is to define rules which do not 

change the model is such way that its semantics is broken. One could specify a rule which creates elements 

without any type. This is critical since many modeling languages require an object to have a type. Those 

constraints depend on the modeling language and any rule should be checked if it violates this constrains.  

As we have seen, a rule contains a left-hand side (LHS) and a right-hand side (RHS). In general a rule can 

be applied to a graph if the LHS is a sub-graph of this graph. The application of the rule changes the sub-

graph matched by the LHS to the RHS. Note that all not matched elements of the graph remain. To model a 

rule at least the following roles of model artifacts for a rule are required: 

1. Reader: Elements marked in the rule as reader have to be matched but are not changed. They 

appear equally in the LHS and RHS. 

2. Eraser: LHS elements marked as erasers are removed. 

3. Creator: RHS elements marked as creators are added to the graph. 

4. Embargo: Since the matching of the LHS defines only the required element one cannot restrict a 

match without embargos. 

For example: If a component in a model is not connected, a rule could add a connection to another 

component having a port free to connect to. The components are nodes as well as their ports. Between the 

ports and the components there is an ñownò or ñcontainmentò relation. A connection is also represented by a 

node because it has a certain type and maybe additional attributes. The LHS of the rule would require two 

nodes of type component (or some more detailed type) which must have at least one port each. The match 

would be restricted to not have a relation from each of the ports to a connector node using the embargo role. 

The RHS would consist of a new connector node with role creator and with relations to the two ports also in 

the role creator.  

In DANSE, the purpose of graph grammar (the set of graph rewriting rules) is to specify the architectural 

changes of a SoS due to dynamicity. The focus is on the creation and deletion of CS during the evolution of 

the SoS as well as on the changing relations between those. Each application of a rule to the SoS model 
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creates a new SoS model in the sense of a snapshot of the SoS. The goal is to be able to model the possible 

snapshots of the SoS as a representation of the SoS dynamicity. 

 

2.3 Contracts 

The connection between the modeling and the specification means was already presented in D6.2.1 and is 

repeated in the following: 

As discussed previously, a system of systems evolves through dynamic changes in its structure to reach a 

specific goal, taking advantage of and combining in different ways the capabilities of the constituent systems. 

The methods that we have described and that we employ to model the dynamical aspect of the system are 

primarily structural: a graph, representing the interconnection and interaction of the constituent systems, or 

of parts thereof, is matched against a pattern, possibly mediating through a condition, to result in a new 

structure that better adapts to a new situation. This may occur over short time scales, for instance in 

response to an emergency situation, or over longer time frames, such as the adoption of a new technology, 

or the organic growth of a community and its infrastructure that demand changes in the way these are 

coordinated. 

While the ability to model structural changes is an essential aspect in the description of the evolving nature 

of a system, the evolution of its requirements is likewise fundamental to properly account for the shifting 

goals and properties of the system of systems, as well as of the constituent systems. In other words, the 

specification in terms of contracts and goals must be adapted alongside the system. The events that trigger 

the adoption of a new specification are the same as those that cause the evolution of the structure, and can 

therefore be modelled using the same devices described earlier. In this case, different contracts and goals 

apply at different times. However, we must investigate the semantics of such an evolving specification to 

clarify how one can go about verifying that the system satisfies or does not satisfy its objective. To do this, 

we follow the proposal of Zhang et al. (Zhang & Cheng, Using temporal logic to specify adaptive program 

semantics, October 2006) (Zhang, Goldsby, & Cheng, Modular verification of dynamically adaptive systems, 

2009) who developed a temporal logic formalism to specify adaptive program semantics. 

The basic approach consists in viewing the system as a composition of a number of steady-state or non-

adaptive components, which are able to transition from one another in response to a trigger event. The 

specification is expressed in terms of goals and contracts, as described in deliverable D6.3.1 (DANSE 

Consortium, 2013), which uses first order linear temporal logic as its underlying semantics. The objective is 

to provide a specification of the requirements across an adaptation, i.e., a dynamic change in the system. 

Temporal logic is in principle able to describe properties over time, and therefore seems suitable for 

specifying evolving requirements. In particular, the until operator U appears to be the closest to capturing the 

meaning of an evolution, since it is able to express the fact that a certain property ◖ must hold until a certain 

property ɣ  holds (◖ U ɣ). However, the semantics of the LTL formula requires that ◖ should hold for a 

sequence of states ů for all suffixes of ů starting from all the states before a certain state. Instead, one 

typically requires that ◖ holds only for a certain interval of states in ů. 
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To solve this problem, LTL can be extended with the so called adapt operator (Zhang & Cheng, Using 

temporal logic to specify adaptive program semantics, October 2006) (Zhang, Goldsby, & Cheng, Modular 

verification of dynamically adaptive systems, 2009), which we denote as (Ÿɋ). Informally, the semantics of 

the operator is the following. Assume the system is specified as a steady-state component C1 which 

transitions at a certain point in time to another steady-state component C2, thus modelling the evolution of 

the system. We say that the system satisfies the requirement ◖ (Ÿɋ) ɣ whenever the system initially 

satisfies ◖ through some behaviour of C1. Then, when the evolution step takes place, the system stops being 

constrained by ◖, and starts satisfying ɣ through some behaviour of C2. The formula ɋ, instead, must be true 

during the evolution phase, i.e., at the change of state between the two steady-state components 

Formally, LTL formulas are satisfied by sequences of states. We must therefore clarify when a sequence ů 

satisfies a formula. Assuming ů can be written as ů = (s0, s1, é), we say that ů Ṻ ◖ (Ÿɋ) ɣ if and only if 

¶ there exists a finite subsequence ůô = (s0, s1, é, sk) of ů such that ůô Ṻ ◖ when ůô is extended with sk 

to an infinite sequence; 

¶ the sequence ůôô = (sk+1, sk+2, é) satisfies ɣ; 

¶ and the sequence (sk, sk+1) satisfies ɋ. 

Therefore, the requirements of the system evolve from ◖ to ɣ, through ɋ. In simple cases, the property ɋ 

can be left out, in which case it simply reduces to the true formula. In other cases, the formula can be used 

to express conditions that must be true of the system during the evolution process. 

Because the system evolves, the requirements (and likewise the behaviours) of a system can be 

distinguished between those that must hold always, i.e., irrespectively of the evolution of the system, and 

those instead that change according to the new structure. The former can be specified with the usual 

specification methods, while the latter require the use of the adaptive form. According to our methodology, 

requirements, goals and contracts are expressed through a number of patterns by which complex formulas 

can be constructed (see deliverable D6.3.1). Similarly, we can identify typical evolution patterns that occur 

commonly, and that precisely define the expected behaviour before the evolution step, the constraints 

necessary for the evolution, the possible restriction during the evolution process, and whether some degree 

of overlap can be allowed between the original and the evolved system.  

In the following, we summarize three common basic evolution patterns that have been identified in the 

literature, and that are applicable to our context. 

¶ One point evolution. This is the simplest pattern that corresponds to our initial informal example. 

Under this pattern, the system initially satisfies a specification S, and after the evolution step is 

triggered by a signal A, it eventually satisfies a specification T. The assumption is that the system 

reaches a state in which all obligations dictated by S are fulfilled before it evolves into the new 

specification T. Including the trigger, the formula that describes this evolution pattern is 

(S Ẓ ὼ A) Ÿɋ T 
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and is visually described in Figure 2-5. As shown, the system transitions to the new configuration 

some time after receiving the trigger event. 

 

 

Figure 2-5: One point evolution 

¶ Guided evolution. Unlike the previous case, the system is restricted by a condition R in order for it to 

reach a safe state in which the evolution step can take place. This could be useful, for instance, 

when the initial system does not guarantee that some safety requirement is reached in some finite 

amount of time before a change in the infrastructure can be allowed. The condition R is used to 

ensure such conditions. In practice, this means that the system goes through two evolution steps: 

the first is used to reach a state in which it is safe to switch to the new configuration, the second 

corresponds to the new configuration itself. Formally, this pattern is described by the formula 

(S Ẓ (ὼ A Ÿɋ1 R)) Ÿɋ2 T 

Visually, the trace is shown in Figure 2-6. Unlike the previous case, there are now states that must 

satisfy the additional condition R, as well as the original specification S which remains in effect until 

the switch is completed. 

 

 

Figure 2-6: Guided evolution 

¶ Overlap evolution. A more general form of evolution implies the coexistence of both the initial and 

final specification during the evolution step. This can be useful to account for cases in which the 

evolution must preserve certain services of the original system for a period of time, while at the same 
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time provide the new (presumably enhanced) services which are possible under the new 

configuration. Formally 

((S Ẓ (ὼ A Ÿɋ1 R)) Ÿɋ2 true) Ẓ (ὼ A Ÿɋ1(T Ẓ (R Ÿɋ2 true))) 

meaning that initially the specification S is satisfied by the system. Then, once the evolution step 

must take place through the event A, the system starts satisfying the specification T as well as a 

restrictive condition R, all the while still satisfying S. This is expressed by the first evolution step 

tagged by ɋ1. In a second evolution step, which takes place at a later time, and once the system has 

reached a state in which it is safe to abandon the specification S (i.e., all the obligations of S have 

been satisfied), then only specification T is enforced, and both S and R are dropped. This step is 

marked by ɋ2. Pictorially, the situation is shown in Figure 2-7, where the specifications S and T are 

allowed to overlap to account for a graceful evolution. 

 

 

Figure 2-7: Overlap evolution 

The same evolving requirement may or may not be satisfied by a system depending on when the system is 

allowed to transition to the new configuration, and on the state to which the transition is taken. In general, it 

is safer to restrict the behaviour of the original system before the evolution, so that the right conditions are 

established in order to reach the new configuration in a safe and known initial condition. 

The patterns that we have described above can be composed in order to produce more complex evolution 

specifications. There are two general forms of composing the patterns. 

¶ Parallel composition. In this form, an original system satisfying the specification S may evolve to 

different alternative specifications T1, T2, é, Tn, in response to different triggers. The evolution to be 

taken may therefore non-deterministically depend on which trigger is received first (e.g., the 

population of a city grows beyond a certain threshold, or a new technology is introduced to support 

the communication infrastructure). The resulting specification, in this case, is simply the disjunction 

of the individual evolution patterns. The specific pattern that is taken depends on the received 

trigger. 
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¶ Sequential composition. In this form, the system undergoes a number of different evolutionary steps, 

taken in a sequence. To achieve this kind of composition, the evolution pattern used to specify the 

first evolutionary step is used as the original source specification S for the second evolutionary step, 

and so on. So, using the point evolution pattern, a sequence of two configuration changes from S to 

T1 and to T2 can be formalized as (((S Ẓ ὼ A1) Ÿɋ T1) Ẓ ὼ A2) Ÿɋ T2. 

By properly combining the composition patterns one can specify complex evolutionary properties using 

simpler specification blocks. 
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3 Unified Profile for DoDAF and MODAF (UPDM) 

3.1 Overview UPDM 
UPDM (Unified Profile for DoDAF and MODAF, January 2012) is a unified Profile for DoDAF (Department of 

Defence Architecture Framework) and MODAF (Ministry of Defence Architectural Framework). It supports 

the capabilities to model architectures of complex systems, System of Systems, and service oriented 

architectures. 

 

 

Figure 3-1: UPDM Viewpoints (Unified Profile for DoDAF and MODAF, January 2012) 

In UPDM model elements are organized in various viewpoints and views. The views and viewpoints which 

are defined in UPDM are depicted in Figure 3-1. All these views and viewpoints consist of further sub-views 

such that the contained models are more focussed on certain criteria of the design. 

 

In the following we will give a brief description to all views and viewpoints.   

- The Acquisition and Project Views (AcV/PV) describe project details, e.g. dependencies between 

projects. AcV/PV contains the following sub-views: AcV-1/PV-1 (organizational perspective on 

projects), AcV-2/PV-2 (timeline perspective on projects), and PV-3 (projects realizing capabilities). 

- The Operational View (OV) is about real-world activities and ñanswer the ñwho,ò ñwhat,ò ñwhen,ò 

ñwhere,ò ñwhy,ò and ñhowò of a missionò (Unified Profile for DoDAF and MODAF, January 2012). 

Contained sub-views: OV-1 (mission or scenario description, list of operational elements), OV-2 

(operational node relation description), OV-3 (operational information exchange matrix), OV-4 Actual 

(relations among resources), OV-4 Typical (organizational structures and interactions), OV-5 

(operational activity model), OV-6a (operational rule model), OV-6b (operational state transition 
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description), OV-6c (operational event-trace description), and OV-7 (information models on 

operational architecture). 

The All Views (AVs) provide an overview description of the considered architecture. Also scope, 

ownership, and timeframe are represented here. ñThe AVs include a dictionary of the terms used in 

the construction of the architectureò (Unified Profile for DoDAF and MODAF, January 2012). AV-1 

(overview information), and AV-2 (representation of all elements of architecture as standalone 

structures). 

- The Strategic Viewpoint (StV) helps to manage the capability management by providing an overall 

Enterprise Architecture assessment of the corresponding capabilities and their relationships. In this 

view, capabilities are introduced, their integration is described, and the realignment or removal are 

modelled. Contained sub-views: CV-7 (mapping of capabilities and services), StV-1 (strategic 

context for enterprises), StV-2 (capability taxonomies), StV-3 (capability phasing), StV-4 

(dependencies between capabilities), StV-5 (fulfilment of capability requirements), and StV-6 

(mapping of capabilities and operational activities). 

- The Systems Viewpoint (SV) describes realizations of architectures such as resource interaction 

specifications (SV-1/SvcV-1) or define specifications on functional and non-functional aspects. The 

models within this viewpoint ñrepresent alternate realizations in terms of equipment capability of the 

operational capabilities expressed through models in the Operational Viewpoint and in the User 

Requirements (Unified Profile for DoDAF and MODAF, January 2012). Contained sub-views: SV-

1/SvcV-1 (resource interaction specification), SV-2/SvcV-2 (systems communication description), 

SV-3/SvcV-3a (resource interaction matrix), SV-4/SvcV-4 (functionality description), SV-5/SvcV-5 

(implementation of operational activities), SV-6/SvcV-6 (system data exchange matrix), SV-7/SvcV-7 

(resource performance parameters matrix), SV-8/SvcV-8 (change of capability configurations), SV-

9/SvcV-9 (technology forecast), SV-10a/SvcV-10a (functional, non-functional specifications), SV-

10b/SvcV-10b (resource response description), SV-10c/SvcV-10c (description of interactions 

between resources), SV-11/DIV-3 (definition of structure of system data), and SV-12 (service 

provision). 

- The Service-Orientated View (SOV) is a description of services offered by constituent systems, 

which are needed to support the operational domain, which are described in the OV. Contained sub-

views: SOV-1 (service hierarchy and taxonomy), SOV-2 (service specification), SOV-3 (service 

mapping view), SOV-4a (service constraints view), SOV-4b (service state model), SOV-4c (service 

interaction specification), and SOV-5 (service functionality). 

- The Technical Viewpoint consists of elements describing standards, rules, notations, and 

conventions ñthat apply to the implementation of the system architectureò (Unified Profile for DoDAF 

and MODAF, January 2012).  Contained sub-views: TV-1 (technical standards), and TV-2 

(technology standard changes). 
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For more detailed information on the UPDM specification please refer to reference (Unified Profile for DoDAF 

and MODAF, January 2012). In the following section we will identify the relevant subset of UPDM which is 

relevant to DANSE. 

 

3.2 Relevant Subset for DANSE 
 

The goal of this section is to determine the most relevant elements of UPDM to model (snapshot of) Systems 

of Systems. For this, we will use the results of section 2, i.e., we will identify those elements of UPDM which 

realize the needed concepts defined there. 

The relevant concepts for modeling identified in section 2.1 are the following 

Å Designing and representation of constituent system ï We need to design systems individually with 

independent purposes.  

Å Services and capabilities ï we need to describe the offered services of constituent systems to their 

environment and their capabilities to realize functionalities. 

Å Collaboration ï we need a concept in order to describe collaboration to reach common goals. 

Å Dynamicity ï we need a concept to capture dynamicity. 

Å Specification and goals ï we need to ensure that systems can work correctly together when changing 

interconnections and adding or removing systems, and need a concept of defining local and global 

goals. 

 

In the following we will analyze the domain meta-model of the UPDM 2.0 specification in order to determine 

all modeling elements, which realize the above needed elements. 
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Figure 3-2: Operational View 2 

 

In order to capture the first modeling need, i.e. constituent systems with capabilities, UPDM offers ñNodeò 

and ñSystemResourceò as ñCapableElementò. For this, consider Figure 3-2, which illustrates the ñOperational 

View 2ò which is used for the description of ñOperationalNodeò relations and the localization of 

ñOperationalCapabilitiesò. The modeling elements of type ñCapableElementò are of ConstituentSystem type 

in the DANSE meta model (DMM). ñActivitiesò and especially ñOperationalActivitiesò are mapped to the 

element Activity. The relation between ñCapableElementò and ñActivitiesò is illustrated in Figure 3-3 in our 

model the relation is named ñrequiredCapabilityò but addresses the same concept. ñActivityò is a parent 

element of ñOperationalActivityò and is related to ñCapabilityò via the relation ñMapsToCapabilityò.  

Constituent systems can take on different roles. In UPDM, this is realized by the ñNodeRoleò element. 

The inter-constituent system communication is modeled via the ñOperationalExchangeò relation depicted in 

Figure 3-2. An ñOperationalExchangeò is realized between two participating nodes. So we could specify that 

constituent systems taking on specific roles have to communicate via some protocol. In the DMM the 
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Exchange element is not refined for a specific operational view and therefore all UPDM ñ*Exchangeò 

relations are equivalent to the DMM Exchange.  

 

 

Figure 3-3: Strategic and Capability View (StV-6) 

 

 

 

 

 

Figure 3-4: Service Oriented View 5 (SOV-5) 
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The above relation of ñcapable elementò and ñcapabilityò is only an excerpt of Figure 3-4, which gives this 

relation in a more direct way. Note, that in DoDAF services are called ñServiceAccessò, i.e. the diagram 

SOV-5 maps services to capabilities. Here, the behavior of a service is defined in terms of functions it is 

expected to perform. In UPDM, services are defined as follows: ñA service is described as a unit of work 

through which a particular Resource provides a useful result to a consuming Resourceò (Unified Profile for 

DoDAF and MODAF, January 2012). So the UDPM service characterization fits to our needed modelling 

element of Service. 

 

 

 

 

 

 

Figure 3-5: System View 1 (SV-1) 

 

The ñSystem View 1ò gives the resource interaction specification. It describes the composition and interaction 

of resources. ñSystem Resourcesò are ñCapable Elementsò, i.e., model elements for ConstituentSystem, as 

illustrated in the SOV-5 figure. System resources interact via the ñResourceInteractionò relation, which 

defines the ñResourceInterfaceò. 
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Figure 3-6: System View SV-10a/SvcV-10a 

 

In a further system view, i.e. SV-10a, the functional and non-functional constraints on implementations 

of the considered architecture are specified. So with these elements, we can constrain structural and 

behavioral elements of the SV viewpoint as resources, functions, data, and ports. ñThe constraints are 

specified in text and may be functional or structuralò (Unified Profile for DoDAF and MODAF, January 2012). 

 

3.3 Mapping of Concepts to UPDM 

The Table 3-1 lists the mapping between DANSE modeling concepts, UPDM and the DANSE Extension 

Profile. The core element the ConstituentSystem is represented in UPDM in several views. The ñSystemò / 

òResourceRoleò is the system view representation which allows to model technical relations like ñExchangeò. 

ñOwnò / ñOwnerò relations are represented as ñLogical-ò / òPhysicalArchitectureò indicating the containment of 

these relations. In the operational view the ñOperationalNodeò represents the CSs and defines the 

ñoperational activitiesò or ñOperationsò of a CS. The two subtypes of ConstituentSystem, 

ActiveConstituentSystem and Infrastrcture, are not distinguished in UPDM but the relation to a goal makes 

them distinguishable. Contracts are mapped to SysML-Requirement and -Constraint 

 

DANSE Modeling Concept UPDM Element Profile Element Comment 

ConstituentSystem System(ResourceRole)/ -  
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OperationalNode/ Resource 

ActiveConstituentSystem - - Follows 

goal 

SystemOfSystems Project   

Infrastucture - - Does not 

follow any 

goal 

Contract Operational-/Resource Constraint, 

ServicePolicy, Rule, Requirement 

(SysML) 

GCSL  

Goal EnterpriseGoal, Mission Sow_goal_attribute  

Resource OperationalExchangeItem, 

ServiceInterface, 

ResourceInteractionItem  

  

Exchange OperationalExchange, 

ServiceInteraction,  

ResourceInteraction 

  

Use    

Command Command   

HasAuthorityOver (CS) Control   

Own / Owner Relations between ResourcePart and 

ResourceArtifact 

  

Activity Activity   

Rule Rule   

Role ResourceRole/ 

ActualorganizationRole/ NodeRole/ 

Post/ Organization/  

  

Capability Capability   

Table 3-1:Mapping of most relevant DMM elements to UPDM 
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4 Extensions of UPDM 

4.1 Modelling of Stochastic Behaviour 
For the CAE, a proposal for stochastic modelling has been worked out and is presented as an overview in 

this subsection. It is based on a set of attribute stereotypes that can be applied to any block attribute. This 

idea is close to the suggestion of the non-normative distribution extensions made in appendix of the SysML 

1.3 specification, but adds the possibility to regenerate a distribution-based random value whenever needed 

(and not only at initialization). Being able to regenerate a random number based on a same distribution 

enables to model real-world behaviours, such as the time needed for a human to perform a task, which is 

repeated over time. 

The chosen implementation in the CAE Rhapsody model was driven by the following requirements: 

¶ be simple enough for the end-user (the SoS architect) 

¶ be easily readable and exploitable by the run-time technologies 

¶ be consistent and make sense from a modelling point of view 

¶ be able to use a single distribution to generate several random values 

Stochastic behaviour is classically represented by the concept of random variable. The probability 

distribution of the variable is interpreted as the probability that the variable takes up a certain value when it is 

observed. To follow this classical approach, given a random variable R that takes values over the reals and a 

real variable V, the assignment ñV = R_observe()ò can be seen as an observation of the random variable, 

provided that ñR_observe()ò function is an automatically or manually defined to generate new random values. 

In order to include stochastic aspects into the UPDM/SysML model, following stereotypes are proposed for 

the DANSE profile: 

1. Numbers (Real and Integer) with a uniform distribution Ą min and max properties 

2. Numbers with a normal distribution Ą mean and standard deviation properties 

3. Numbers with a custom distribution Ą custom óobserveô function property (user-defined) 

These three different kinds of generic random variables are a compromise between: 

¶ Usability Ą pick one variable kind from a set of predefined ones (library) 

¶ Expressiveness Ą enable the user to specify custom ones; furthermore, by allowing all the above 

properties to be defined as óStringô, the random variables could support expressions which refer to 

the model, which especially enables to define causal dependencies to the state of the model (e.g. 

take time into account) 

Please refer to the CAE deliverable to see application examples of these concepts. 

Another stochastic aspect that is still to be considered for the modelling formalism is the ability to express the 

probability that one transition is taken rather than another one in the behavioural model. The same comment 

applies at the dynamicity level, where the creation/deletion of constituent systems or change of relations 

between them should be stochastically quantifiable. 
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4.2 Capturing Timing Properties 

Timing is a crucial issue in safety critical scenarios at both system and SoS level as the correct functionality 

directly depends on the timely operation of all interacting parts of a considered part of a SoS or system. The 

execution of services is related to time as these naturally cannot be executed instantaneously.  For this, we 

need timed behaviour models such as timed automata or timed sequence charts. Due to complexity, it could 

be desirable to have black box views to constituent systems, where the exact execution semantics is 

abstracted and only relevant properties are kept. For this, contracts are a suitable formalism to capture such 

properties. As complex interdependencies between several services executed on a single resource or 

system could lead to delays in the executions, it is not obvious whether these contracts are always fulfilled. 

As other parts of the SoS depend on these timing contracts, it is a crucial verification task whether all 

constituent systems and parts of the SoS adhere to their contracts.  

End to end deadlines determine the allowed execution time which is allowed to pass from the triggering of 

the corresponding part of the SoS to its response. If such timing issues are violated, the correct functionality 

of the system or SoS will be affected. Consider for example Figure 4-1. The considered part of a SoS is 

decomposed into further constituent systems on which a set of services are allocated. The part of the 

considered SoS is annotated by a contract consisting of an environmental assumption (A) and a guarantee 

(G). It is required, that the delay between trigger óaô and response ógô is between [t1, t2]. For this, the SoS part 

assumes that óaô occurs with a particular period. As a set of services are allocated on each constituent 

system which cannot be executed in parallel, it is not obvious whether this decomposition structure satisfies 

the requirement..  

 

Figure 4-1: Left ï part of SoS with end to end deadline; Right ï changing structure of SoS part. 

 

Further we have to take into account that changes of the structure may occur. For this, consider the right part 

of Figure 4-1. For the new decomposition structure of the part of the SoS it has to be guaranteed whether the 

contract still holds. 
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In order to have correctly interacting constituent systems and systems working in a timely manner, both 

systems and parts of the SoS need to be annotated by timing contracts. Further, these timing specifications 

need to be captured in a rigorous way in order to enable automatic verification. So far, these specifications 

cannot be captured by UPDM.  

 

4.3 Concise Modeling (Architecture Optimization) 

 

Concise Modeling is developed in order to solve several main problems in large-scale system prototyping: 

¶ It is aiding the modeler to have fewer elements in a model that is being created manually in the tool 

(concise model), than the actual model that is defined by it (the "expanded" model). The expanded 

model will usually have more instances (parts) than the concise model; it will also have realizations of 

all the links that are defined in a concise model. 

¶ Reducing the number of elements that are in the model we create is very important, because a vast 

amount of elements to take into account in large systems makes the model cluttered, reducing 

possibility of concentration on important aspects. Thus, a concise model makes it easier to 

understand, to modify and update, and to verify the model. 

¶ It uses a database structure in order to supplement the concise model information. It means that the 

whole "picture" of the expanded model is composed of the information in the concise model and in the 

database (It is also dependent on the decisions of the optimization engine, but it is described in the 

next point). It is helpful in two ways: 

o First, we can have one element in a concise model that will be "populated" from a database list (It 

can spare adding a lot of information that is important for the model, but unimportant from the 

modeling point of view). 

o Second, we can have one block in a concise model that will be "realized" with one of the 

alternatives we have in our database (It is also related to optimization that is described next). 

¶ The concise plug-in processes the concise model and the database information to create an input for 

an optimization engine. An optimization engine then performs design space exploration according to 

the criteria appearing in the concise model.  

o Using all the information from the concise model and the database, the plug-in and an optimization 

engine create a design space (meaning, all the possible variants of the expanded models, 

confirming to the criteria arising from the concise model). Everything in the model influences the 

design space - the blocks and their multiplicities, the connections and multiplicities at their ends, 

the mappings between levels of abstraction and the constraints that are attached to the blocks or 

to the attributes in the model (constraints are written in an OPL language). 
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This way we get not only a compact and clear way to model a difficult and large-scale system, but we also 

have an optimization program to perform design space exploration and propose us the solutions on the 

efficiency frontier of the design space. 

Moreover, concise modeling is designed to support the multi-criteria (multi-objective) optimization. Multi-

criteria optimization is very important in real-world designs, where we want to know the values of different 

optimization objectives (such as cost, weight, etc) individually for each design alternative, rather than 

some single aggregated value. Multi-objective optimization provides more precise and clear information to 

the decision maker, than a single-objective optimization. As we want to add more metrics (such as 

reliability, complexity, etc), the advantage of the multi-objective optimization approach becomes more 

prominent. 

The full list of stereotypes and tags using for concise modeling can be found in the D6.5.2 Extension of 

standard profiles for DANSE Modeling (DANSE Consotium, 2014). 

 

4.3.1 Abstraction layers and mappings 

 

The concise modeling approach has three layers in three different model packages as represented in Figure 

4-2: Packages of a concise model.  

 

Figure 4-2: Packages of a concise model 

¶ Functional layer ï serves as the requirements definition for the system architecture.  

o May be modeled concisely in some cases, but all parts and links will be explicit  

o May be a result of a higher abstraction iteration using the same approach 

o May have connecting links 

All parts and links of functional layer must have <<functional>> stereotype. 

¶ Technical layer ï architecture modeling plane. Modeling is based on the requirements of the functional 

layer. The objects on this plane usually represent real components (or subcomponents) and real flows 

between them (data, energy). All parts and links of technical layer must have <<technical>> 

stereotype.  
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¶ Geometrical layer ï used to index the objects of the technical layer. Sometimes this layer directly 

represents the geometry of the system and is used as such. For example the instances of this layer 

may represent possible placeholders for the actual components on the technical plane with the 

optimization process tasked with finding the right combination of components and their locations. 

Alternatively, this layer can be an abstract collection of indices bounded by constraints. All parts and 

links of geometrical layer must have <<geometrical>> stereotype 

¶ Mapping ï the way to relate one layer to the other. Mapping is done by using the SysML «allocate» 

dependency. An object on the functional plane can only be mapped to one object on the technical 

plane, as otherwise there would be ambiguity in the definition. However, any number of objects on the 

functional plane can be mapped to a single object on the technical plane. If a multiple mapping is 

indicated, the meaning is that the optimization must select the best mapping subject to constraints and 

rules. Mappings from functional to technical layer must have <<mappedTo>> stereotype. Mappings 

from technical to geometrical layer must have <<allocateTo>> stereotype. 

 

4.3.2 Catalogues 

 

A technical part in the concise model represent some physical element (or number of physical elements) of 

the some specific type. In general case the actual parameters of this physical element (or these physical 

elements) are not known during modelling process, but must be chosen from some catalogue by 

optimization solver. I.e., simplifying the actual process, we can say that optimization solver "picks" most 

suitable physical element in place of technical part in the concise model from the catalogue of different 

(having different attributes)  physical elements of specific type. To achieve this behaviour in the concise 

model a <<catalog>> stereotype must be applied to the technical block from which corresponding technical 

part instantiated.  The <<catalog>> stereotype also must be applied to all attributes of this block which 

values are chosen from the catalogue. For example, if we model antennas for LTE network and name, cost 

and antennaId parameters must be chosen from catalogue of different LTE antennas, then we must create 

block with corresponding attributes and apply <<catalog>> stereotype to this block and to the corresponding 

attributes  as shown on Figure 4-3: Example of usage of catalogues 

 

Figure 4-3: Example of usage of catalogues  
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4.3.3 Typed connectors 

 

Connectors between technical parts of the system model are often represents various physical elements 

such as cables, shafts, ducts, pipes, etc. The typed connectors used to bring this relationship into concise 

model. Typed connector is a connector that has some technical part behind it. This technical part is of type 

(of block) which represent some class of physical elements serving as connectors e.g. power cables, water 

pipes, etc. Applying stereotype <<TypedConnector>> to a connector causes a tag "type" to appear (to be 

added) among the properties of this connector. The required block type must be assigned to this tag as 

shown on Figure 4-4: Setting type for typed connector.  

 

Figure 4-4: Setting type for typed connector. 

In the example, the type of connector is Cable_Pow (Power Cable). The meaning is that the paths between 

the items in the technical layer will not be just some connectors, but each will be a part of block Cable_Pow, 

and the attribute values of these connectors will be filled in an appropriate way. The most important is that 

the plug-in and the optimization will fill the distances that the cables cover, using the geometrical data from 

the database, making it possible for us to know, for example, the weight and the cost of the cables. 

 

4.3.4 Optimization model parameters 
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Parts, links, dependencies and attributes that haven't <<optimized>> stereotype are treated as optimization 

model parameters. Parameters can be taken directly from the model or from the related database. For those 

parameters which values are taken from database all corresponding SysML elements must have 

<<inventory>> stereotype. Setting <<inventory>> stereotype on part, link or dependency implies that 

corresponding element represent some table of corresponding "physical" elements in the database. Each 

row of this table must include values of <<inventory>> attributes of corresponding element. 

Concise model also allow creating auto-calculating parameters. The values of auto-calculating parameters is 

not known during modelling process but can be calculated from values of other parameters using some 

mathematical formulas. To create auto-calculated parameter <<optimized>> and <<derived>> stereotypes 

must be applied to the attribute represented corresponding parameter. The value of this attribute calculated 

using attached constraint that typically have <<sow_assignment>> stereotype (other concise constraint 

stereotypes are also can be applied). On the Figure 4-5: Usage of auto-calculating parameters we can see 

different auto-calculating parameters representing length, cost and weight of power cable. The values of 

these parameters depending from actual cable length, i.e. calculated from distance of geometrical route to 

which "physical" cable can be allocated. Formulas for the parameters calculation are shown in the 

corresponding constraints. 

 

Figure 4-5: Usage of auto-calculating parameters 

 

4.3.5 Decision variables 

 

All parts, links, dependencies and attributes having <<optimized>> stereotype (and not having <<derived>> 

stereotype) are treated as decision variables. Particular "physical" part, link or dependency can be realized 

or not realized in the optimal architecture according to the decision of the optimization engine. Concise plug-

in add decision variable to each element having stereotype <<optimized>>. This variable gets value 1 if 

corresponding "physical" elements realized in the optimal architecture and 0 otherwise. The variable is not a 

part of the concise model, but can be used in the optimization constraints. The variable can be accessed by 

using <isChosen>, <isSelected> or <part> name. 
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4.3.6 Optimization goals 

 

An attribute having <<sow_goal_attribute>> became one of the optimization goals. Multiply optimization 

goals can be defined for the one model. In this case optimization engine instead of one optimal solution 

calculates set of optimal solution called Pareto frontier.  On the Figure 4-6: Usage of multiply optimization 

goals we have three different optimization goals (optimize system cost, system weight and total cable 

length). 

 

Figure 4-6: Usage of multiply optimization goals 

The attribute marked by this stereotype equipped with following tags: 

Á Action: can be minimize or maximize depending on optimization goal. 

Á Description: string described the optimization goal. 

Á isEnabled: can be true or false. Setting this attribute to be false "turned off" selected optimization 

goal. 

Á Priority: set priority for selected optimization goal. 

Example of settings for these tags is shown on Figure 4-7: Setting tags of optimization goal attribute. In the 

example the optimization goal is to minimize system cost and this goal have high priority (priority=1). 
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Figure 4-7: Setting tags of optimization goal attribute. 

 

4.3.7 Explicit constraints 

 

Constraints of the optimization model can be defined in the explicit or implicit form. Explicit constraints are 

defined using SysML constraint element. The corresponding constraint element must have 

<<sow_optimization>> stereotype.  Additionally <<sow_constraint>> stereotype can be applied to 

optimization constraint.  The attribute marked by <<sow_constraint>> stereotype equipped with following 

tags: 

Á Description: string described the constraint. 

Á isEnabled: can be true or false. Setting this attribute to be false "turned off" selected constraint. 

Á isVisible: can be true or false.  

Example of settings for these tags is shown on Figure 4-8: Setting tags for optimization constraint.  

Explicit constraints are defined by using GSCL extension for optimization (see D6.3.2 Specification of the 

goal contracts specification language ( (DANSE Consortium, 2013))). 
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Figure 4-8: Setting tags for optimization constraint 

 

4.3.8 Implicit constraints 

 

Implicit constraints are not specified in the concise model by using some specific SysML element, but 

translated into optimization code from concise model mappings, multiplicities and from stereotypes related to 

special algebras. 

 

4.3.8.1 Constraints from multiplicities 

 

Each part in the internal block diagram has multiplicity. The multiplicity can be set as a single number (1), 

interval of numbers (1..10) or any number (*). In case when multiplicity defined as number or interval of 

numbers it is automatically translated into constraint in the optimization code. I.e. if some part have 

multiplicity 1, then there is exactly one element of this type must be in the optimal architecture, or if some 

part have multiplicity 1..10, then optimal architecture can't have less then one or greater then ten 

corresponding elements. 

Each link also has multiplicities on its ends. These multiplicities are defined in the same way as for the parts. 

In this case meaning of multiplicities is number of links between corresponding parts. I.e. if on the one end of 

the link we have multiplicity 1 and on the other end we have multiplicity *, then each element from the 

second end must be connected to exactly one element from the first end.   

 








































